基于双向重采样的高分辨率前视成像算法
收稿日期: 2023-03-28
修回日期: 2023-05-04
录用日期: 2023-06-20
网络出版日期: 2023-06-27
基金资助
华侨大学研究生科研创新基金(17014082025);华侨大学人才项目(10BS312)
Received date: 2023-03-28
Revised date: 2023-05-04
Accepted date: 2023-06-20
Online published: 2023-06-27
高速平台双基SAR的高速机动特性和双基前视构型使其高分辨率成像面临严峻挑战。在该体制下,发射机以侧视方式发送信号,而高速运动的接收平台在前视模式下接收回波。由于高速度、大加速度的存在,使SAR回波的距离徙动现象以及二维耦合、空变特性都更加严重,传统的“停走停”模型不再适用。为了解决上述问题,提出了适用于高速平台的“非停走停”斜距方程及回波模型,然后通过分析信号中的空变分量及其对回波相位的影响,提出了基于双向重采样的成像算法。该算法有效补偿了SAR回波在距离和方位向的空变相位误差,提高了高速平台双基SAR的前视聚焦性能,通过仿真验证了所提算法的有效性。
关键词: 高速平台双基SAR; 前视成像; “非停走停”回波模型; 二维空变特性; 双向重采样算法
郑志瀛 , 谭鸽伟 , 蒋丁一 . 基于双向重采样的高分辨率前视成像算法[J]. 航空学报, 2024 , 45(4) : 328749 -328749 . DOI: 10.7527/S1000-6893.2023.28749
1 | LIU Z T, LI Z Y, HUANG C, et al. Bistatic forward-looking SAR KDCT-FSFT-based refocusing method for ground moving target with unknown curve motion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13( 1): 4848- 4858. |
2 | ZHONG H, LIU X Z. An effective focusing approach for azimuth invariant bistatic SAR processing[J]. Signal Processing, 2010, 90( 1): 395- 404. |
3 | 樊晨阳, 贺思三, 郭乾. 雷达前视成像技术的研究现状[J]. 电光与控制, 2021, 28( 9): 59- 64. |
FAN C Y, HE S S, GUO Q. Research status of radar forward-looking imaging technology[J]. Electronics Optics & Control, 2021, 28( 9): 59- 64 (in Chinese). | |
4 | ZHANG X H, GU H, SU W M. Squint-minimised chirp scaling algorithm for bistatic forward-looking SAR imaging[J]. IET Radar, Sonar & Navigation, 2020, 14( 2): 290- 298. |
5 | ZHONG H, ZHAO R H, SONG H N, et al. An improved imaging algorithm for high-resolution and highly squinted one-stationary bistatic SAR using extended nonlinear chirp scaling based on equi-sum of bistatic ranges[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18( 7): 1244- 1248. |
6 | ZHANG Q H, WU J J, QU J Y, et al. Echo model without stop-and-go approximation for bistatic SAR with maneuvers[C]∥ IEEE Geoscience and Remote Sensing Letters. Piscataway: IEEE Press, 2019: 1056- 1060. |
7 | ZHOU S, YANG L, ZHAO L F, et al. A new fast factorized back projection algorithm for bistatic forward-looking SAR imaging based on orthogonal elliptical polar coordinate[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12( 5): 1508- 1520. |
8 | ZHANG Q H, WU J J, LI Z Y, et al. PFA for bistatic forward-looking SAR mounted on high-speed maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57( 8): 6018- 6036. |
9 | XIONG T, LI Y C, LI Q, et al. Using an equivalence-based approach to derive 2-D spectrum of BiSAR data and implementation into an RDA processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59( 6): 4765- 4774. |
10 | XIONG J T, XIAN L, HUANG Y L, et al. Research on improved RD algorithm for airborne bistatic SAR and experimental data processing[C]∥ 7th European Conference on Synthetic Aperture Radar. Piscataway: IEEE Press, 2011: 978- 982. |
11 | WANG W, LIAO G S, LI D, et al. Focus improvement of squint bistatic SAR data using azimuth nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11( 1): 229- 233. |
12 | LIU W K, SUN G C, XIA X G, et al. A modified CSA based on joint time-Doppler resampling for MEO SAR stripmap mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56( 6): 3573- 3586. |
13 | DING J B, LI Y C, QUAN Y H, et al. Analysis of diving configuration of bistatic forward-looking SAR based on nonlinear chirp scaling algorithm[C]∥ 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar. Piscataway: IEEE Press, 2019: 2474- 2478. |
14 | ZHANG Q H, WU J J, YANG J Y, et al. Extended nonlinear chirp scaling algorithm with topography compensation for maneuvering-platform bistatic forward-looking SAR[C]∥ 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway: IEEE Press, 2017: 1047- 1050. |
15 | WANG Z G, LIU M, AI G T, et al. Focusing of bistatic SAR with curved trajectory based on extended azimuth nonlinear chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58( 6): 4160- 4179. |
16 | ZENG T, HU C, WU L X, et al. Extended NLCS algorithm of BiSAR systems with a squinted transmitter and a fixed receiver: Theory and experimental confirmation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51( 10): 5019- 5030. |
17 | LI S P, ZHONG H, YANG C L . et al. Focusing nonparallel-track bistatic SAR data using modified frequency extended nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19( 12): 1545- 1550. |
18 | LI C, ZHANG H, DENG Y K, et al. Focusing the L-band spaceborne bistatic SAR mission data using a modified RD algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58( 1): 294- 306. |
19 | DING J B, LI Y C, LI M, et al. Focusing high maneuvering bistatic forward-looking SAR with stationary transmitter using extended keystone transform and modified frequency nonlinear chirp scaling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15( 3): 2476- 2492. |
20 | LIANG M, SU W M, GU H. Focusing high-resolution high forward-looking bistatic SAR with nonequal platform velocities based on keystone transform and modified nonlinear chirp scaling algorithm[J]. IEEE Sensors Journal, 2019, 19( 3): 901- 908. |
21 | 徐熙毅, 谭鸽伟, 李彪. 基于空变分离的两步聚焦双基曲线合成孔径雷达成像[J]. 兵工学报, 2022, 43( 6): 1365- 1375. |
XU X Y, TAN G W, LI B. Two-step imaging of bistatic SAR with curvilinear trajectory based on space-variant separation[J]. Acta Armamentarii, 2022, 43( 6): 1365- 1375 (in Chinese). | |
22 | ZHANG X H, GU H, SU W M. Focusing bistatic forward-looking SAR images use omega-k algorithm based on modified hyperbolic approximating[C]∥ 2019 International Conference on Control, Automation and Information Sciences (ICCAIS). Piscataway: IEEE Press, 2019: 986- 990. |
23 | 董祺, 杨泽民, 李震宇, 等. 基于方位空变斜距模型的大斜视机动平台波数域SAR成像算法[J]. 电子与信息学报, 2016, 38( 12): 3166- 3173. |
DONG Q, YANG Z M, LI Z Y, et al. Wavenumber-domain imaging algorithm for high squint SAR based on azimuth variation range model[J]. Journal of Electronics & Information Technology, 2016, 38( 12): 3166- 3173 (in Chinese). |
/
〈 |
|
〉 |