激波及其干扰主动流动控制研究进展
收稿日期: 2023-05-15
修回日期: 2023-05-29
录用日期: 2023-06-19
网络出版日期: 2023-06-21
基金资助
国家自然科学基金(92271110);国防科技大学科研计划(ZK22-30)
Research progress of active flow control of shock wave and its interaction
Received date: 2023-05-15
Revised date: 2023-05-29
Accepted date: 2023-06-19
Online published: 2023-06-21
Supported by
National Natural Science Foundation of China(92271110);Natural Science Program of National University of Defense Technology(ZK22-30)
激波及其干扰是超声速/高超声速飞行器内外流中广泛存在的流动现象,且会带来阻力增大、压力载荷和热载荷剧增以及低频非定常振荡等严重问题,严重影响飞行器航程、结构寿命和飞行安全。主动流动控制技术作为解决上述问题的新思路,近年来受广泛关注且有望成为未来飞行器设计新的自由度。对近年应用于激波控制、激波/激波干扰控制及激波/边界层干扰控制的主动流动控制技术研究进展进行综述,重点讨论主动射流、激光能量沉积及等离子体放电等主动流动控制技术的作用效果与控制机理,并对目前激波及其干扰主动流动控制方式存在的不足进行展望。
罗振兵 , 谢玮 , 解旭祯 , 周岩 , 刘强 . 激波及其干扰主动流动控制研究进展[J]. 航空学报, 2023 , 44(15) : 529002 -529002 . DOI: 10.7527/S1000-6893.2023.29002
Shock wave and its interaction are widespread flow phenomena in the internal and external flow of supersonic/hypersonic vehicles, and will cause serious problems such as increased drag, increased pressure load and thermal load, and low-frequency unsteady oscillation, seriously affecting the range, structural life, and flight safety of the vehicles. As a new way to solve the above problems, active flow control technology has attracted extensive attention in recent years, and is expected to become a new degree of freedom in future vehicle design. The recent progress of active flow control technologies applied to shock wave control, shock/shock interaction control and shock wave/boundary layer interaction control is reviewed, with emphasis on the control effect and mechanism of active flow control technologies such as active jet, laser energy deposition and plasma discharge. Finally, the weaknesses of the current active flow control methods for shock wave and its interaction are discussed and corresponding prospects are made.
1 | 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1): 58-85. |
WU Z N, BAI C Y, LI J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 58-85 (in Chinese). | |
2 | HORNUNG H. Regular and Mach reflection of shock waves[J]. Annual Review of Fluid Mechanics, 1986, 18: 33-58. |
3 | BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: Where we’ve been, where we’re going[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536. |
4 | 杨基明, 李祝飞, 朱雨建. 高超声速流动中的激波及相互作用[M]. 北京: 国防工业出版社, 2019. |
YANG J M, LI Z F, ZHU Y J. Shock waves and shock interactions in hypersonic flow[M]. Beijing: National Defense Industry Press, 2019 (in Chinese). | |
5 | BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011. |
6 | GAITONDE D V, ADLER M C. Dynamics of three-dimensional shock-wave/boundary-layer interactions[J]. Annual Review of Fluid Mechanics, 2023, 55: 291-321. |
7 | GAITONDE D V. Progress in shock wave/boundary layer interactions[J]. Progress in Aerospace Sciences, 2015, 72: 80-99. |
8 | WATTS J D. Flight experience with shock impingement and interference heating on the X-15-2 research airplane: NASA TMX-1669[R]. Washington, D.C.:NASA, 1968. |
9 | 周岩. 新型等离子体合成射流及其激波控制特性研究[D]. 长沙: 国防科技大学, 2018. |
ZHOU Y. Novel plasma synthetic jet and its application in shock wave control[D]. Changsha: National University of Defense Technology, 2018 (in Chinese). | |
10 | 罗振兵, 夏智勋, 王林. 高超声速飞行器内外流主动流动控制[M]. 北京: 科学出版社, 2019: 3-38. |
LUO Z B, XIA Z X, WANG L. Active flow control of internal and external flow in hypersonic vehicle[M]. Beijing: Science Press, 2019: 3-38 (in Chinese). | |
11 | 黄杰, 姚卫星. 高超声速飞行器激波控制减阻技术[J]. 宇航学报, 2020, 41(10): 1280-1287. |
HUANG J, YAO W X. Drag reduction of hypersonic vehicles by shock control[J]. Journal of Astronautics, 2020, 41(10): 1280-1287 (in Chinese). | |
12 | 陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报, 2021, 42(7): 124773. |
CHEN J Z, HU G, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124773 (in Chinese). | |
13 | HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences, 2019, 105: 31-39. |
14 | DURNA A S, HAJJ ALI BARADA M EL, CELIK B. Shock interaction mechanisms on a double wedge at Mach 7[J]. Physics of Fluids, 2016, 28(9): 096101. |
15 | HASHIMOTO T. Experimental investigation of hypersonic flow induced separation over double wedges[J]. Journal of Thermal Science, 2009, 18(3): 220-225. |
16 | SHIROSHANA T, VLADIMIR T, DIMITRIS D. Chemically reacting flows around a double-cone, including ablation effects[C]∥ 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
17 | 李素循, 马继魁, 郭孝国. 大后掠钝舵高超声速干扰特性实验研究[J]. 气体物理, 2016, 1(3): 1-5. |
LI S X, MA J K, GUO X G. Experimental study of hypersonic interaction flow induced by high sweep fin model[J]. Physics of Gases, 2016, 1(3): 1-5 (in Chinese). | |
18 | XIANG G X, WANG C, TENG H H, et al. Investigations of three-dimensional shock/shock interactions over symmetrical intersecting wedges[J]. AIAA Journal, 2016, 54(5): 1472-1481. |
19 | EDNEY B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock: FFA-115[R]. Washington, D.C.: National Security Agency, 1968. |
20 | VAN WIE D M. Scramjet inlets: Volume 189[M]. Reston: AIAA, 2000: 447-511. |
21 | 杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰[J]. 力学进展, 2016, 46(1): 541-587. |
YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46(1): 541-587 (in Chinese). | |
22 | MAHAPATRA D, JAGADEESH G. Studies on unsteady shock interactions near a generic scramjet inlet[J]. AIAA Journal, 2009, 47(9): 2223-2232. |
23 | ZHONG X L. Application of essentially nonoscillatory schemes to unsteady hypersonic shock-shock interference heating problems[J]. AIAA Journal, 1994, 32(8): 1606-1616. |
24 | HUANG W, WU H, YANG Y G, et al. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows[J]. Acta Astronautica, 2020, 174: 103-122. |
25 | CHANG E W K, CHAN W Y K, MCINTYRE T J, et al. Hypersonic shock impingement studies on a flat plate: Flow separation of laminar boundary layers[J]. Journal of Fluid Mechanics, 2022, 951: A19. |
26 | CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46: 469-492. |
27 | BUSHNELL D M. Shock wave drag reduction[J]. Annual Review of Fluid Mechanics, 2004, 36: 81-96. |
28 | SHARMA K, NAIR M T. Combination of counterflow jet and cavity for heat flux and drag reduction[J]. Physics of Fluids, 2020, 32(5): 056107. |
29 | FINLEY P J. The flow of a jet from a body opposing a supersonic free stream[J]. Journal of Fluid Mechanics, 1966, 26(2): 337-368. |
30 | 王泽江, 李杰, 曾学军, 等. 逆向喷流对双锥导弹外形减阻特性的影响[J]. 航空学报, 2020, 41(12): 124116. |
WANG Z J, LI J, ZENG X J, et al. Effect of opposing jet on drag reduction characteristics of double-cone missile shape[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124116 (in Chinese). | |
31 | 王殿恺, 文明, 王伟东, 等. 脉冲激光与正激波相互作用过程和减阻机理的实验研究[J]. 力学学报, 2018, 50(6): 1337-1345. |
WANG D K, WEN M, WANG W D, et al. Experimental study on process and mechanisms of wave drag reduction during pulsed laser interacting with normal shock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1337-1345 (in Chinese). | |
32 | 韩路阳, 王斌, 蒲亮, 等. 能量沉积减阻技术机理及相关问题研究进展[J]. 航空学报, 2022, 43(9): 026032. |
HAN L Y, WANG B, PU L, et al. Research progress on mechanism and related problems of energy deposition drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 026032 (in Chinese). | |
33 | 石继林, 王殿恺. 激光减阻机理研究进展[J]. 激光与红外, 2021, 51(7): 827-835. |
SHI J L, WANG D K. Research progress of laser drag reduction mechanism[J]. Laser & Infrared, 2021, 51(7): 827-835 (in Chinese). | |
34 | XIE W, LUO Z B, ZHOU Y, et al. Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction[J]. Chinese Journal of Aeronautics, 2022, 35(8): 75-91. |
35 | XIE W, LUO Z B, HOU L, et al. Characterization of plasma synthetic jet actuator with Laval-shaped exit and application to drag reduction in supersonic flow[J]. Physics of Fluids, 2021, 33(9): 096104. |
36 | XIE W, LUO Z B, ZHOU Y, et al. Experimental study on plasma synthetic jet for drag reduction in hypersonic flow[J]. AIAA Journal, 2023, 61(3): 1428-1434. |
37 | LEONOV S, YARANTSEV D, SOLOVIEV V. Experiments on control of supersonic flow structure in model inlet by electrical discharge[C]∥ Proceedings of the 38th Plasmadynamics and Lasers Conference. Reston: AIAA, 2007. |
38 | LEONOV S B, YARANTSEV D A. Near-surface electrical discharge in supersonic airflow: Properties and flow control[J]. Journal of Propulsion and Power, 2008, 24(6): 1168-1181. |
39 | 王健, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的机理研究[J]. 物理学报, 2009, 58(8): 5513-5519. |
WANG J, LI Y H, CHENG B Q, et al. The mechanism investigation on shock wave controlled by plasma aerodynamic actuation[J]. Acta Physica Sinica, 2009, 58(8): 5513-5519 (in Chinese). | |
40 | 王健, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的实验研究[J]. 航空学报, 2009, 30(8): 1374-1379. |
WANG J, LI Y H, CHENG B Q, et al. Experimental investigation on shock wave control by plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1374-1379 (in Chinese). | |
41 | ZHOU Y, XIA Z X, LUO Z B, et al. Effect of three-electrode plasma synthetic jet actuator on shock wave control[J]. Science China Technological Sciences, 2017, 60(1): 146-152. |
42 | ZHOU Y, XIA Z X, LUO Z B, et al. Characterization of three-electrode SparkJet actuator for hypersonic flow control[J]. AIAA Journal, 2019, 57(2): 879-885. |
43 | HUANG H X, TAN H J, SUN S, et al. Letter: Transient interaction between plasma jet and supersonic compression ramp flow[J]. Physics of Fluids, 2018, 30(4): 041703. |
44 | WANG H Y, LI J, JIN D, et al. Effect of a transverse plasma jet on a shock wave induced by a ramp[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1854-1865. |
45 | BOBASHEV S V, EROFEEV A V, LAPUSHKINA T A, et al. Effect of magnetohydrodynamics interaction in various parts of diffuser on inlet shocks: Experiment[J]. Journal of Propulsion and Power, 2005, 21(5): 831-837. |
46 | FOMICHEV V, YADRENKIN M, PODZIN V, et al. Flow settling over a wedge at the MHD-effect on a hypersonic air flow[C]∥ Proceedings of the 42nd AIAA Plasmadynamics and Lasers Conference. Reston: AIAA, 2011. |
47 | 李祝飞, 王军, 张志雨, 等. V形钝化前缘激波干扰问题[J]. 气动研究与实验, 2020, 32(1): 63-75. |
LI Z F, WANG J, ZHANG Z Y, et al. Shock interactions generated by V-shaped blunt leading edges[J]. Aerodynamic Research & Experiment, 2020, 32(1): 63-75 (in Chinese). | |
48 | 张英杰, 李祝飞, 张志雨, 等. 侧滑角对V字形钝化前缘激波振荡特性影响[J]. 推进技术, 2022, 43(11): 81-93. |
ZHANG Y J, LI Z F, ZHANG Z Y, et al. Effects of sideslip angle on shock oscillations of V-shaped blunt leading edge[J]. Journal of Propulsion Technology, 2022, 43(11): 81-93 (in Chinese). | |
49 | MARTINEZ-SCHRAMM J, EITELBERG G. Shock boundary layer interaction in hypersonic high enthalpy flow on a double wedge[C]∥ 22nd International Symposium on Shock Waves. London: Imperial College, 1999. |
50 | STARIKOVSKIY A, ALEKSANDROV N. Plasma-assisted ignition and combustion[J]. Progress in Energy and Combustion Science, 2013, 39(1): 61-110. |
51 | EGGERS T, DITTRICH R, VAVILL R. Numerical analysis of the SKYLON spaceplane in hypersonic flow: AIAA-2011-2298 [R]. Reston: AIAA, 2011. |
52 | 杨勇, 陈洪波. 高超声速再入飞行器IXV的研制与飞行试验[M]. 北京: 国防工业出版社, 2018. |
YANG Y, CHEN H B. Development and flight test of the intermediate experimental vehicle[M]. Beijing: National Defense Industry Press, 2018 (in Chinese). | |
53 | 姜宝森, 张亮, 李俊红, 等. 吸气式飞行器进气道唇口三维激波/激波干扰[J]. 航空动力学报, 2019, 34(4): 821-828. |
JIANG B S, ZHANG L, LI J H, et al. Three-dimensional shock/shock interaction of airbreathing vehicle’s inlet lip[J]. Journal of Aerospace Power, 2019, 34(4): 821-828 (in Chinese). | |
54 | GOONKO Y P, LATYPOV A F, MAZHUL I I, et al. Structure of flow over a hypersonic inlet with side compression wedges[J]. AIAA Journal, 2003, 41(3): 436-447. |
55 | ZHANG Z Y, LI Z F, YANG J M. Transitions of shock interactions on V-shaped blunt leading edges[J]. Journal of Fluid Mechanics, 2021, 912: A12. |
56 | WANG J, LI Z F, ZHANG Z Y, et al. Shock interactions on V-shaped blunt leading edges with various conic crotches[J]. AIAA Journal, 2020, 58(3): 1407-1411. |
57 | WANG J, LI Z F, YANG J M. Shock-induced pressure/heating loads on V-shaped leading edges with nonuniform bluntness[J]. AIAA Journal, 2021, 59(3): 1114-1118. |
58 | EDNEY B E. Effects of shock impingement on the heat transfer around blunt bodies[J]. AIAA Journal, 1968, 6(1): 15-21. |
59 | OLEJNICZAK J, WRIGHT M J, CANDLER G V. Numerical study of inviscid shock interactions on double-wedge geometries[J]. Journal of Fluid Mechanics, 1997, 352: 1-25. |
60 | WIETING A R. Multiple shock-shock interference on a cylindrical leading edge[J]. AIAA Journal, 1992, 30(8): 2073-2079. |
61 | PRABHU R, THAREJA R, WIETING A. Computational studies of a fluid spike as a leading edge protection device for shock-shock interference heating[C]∥ Proceedings of the 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston: AIAA, 1991. |
62 | ALBERTSON C, VENKAT V. Shock interaction control for scramjet cowl leading edges[C]∥ AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005. |
63 | ADELGREN R G, YAN H, ELLIOTT G S, et al. Localized flow control by laser energy deposition applied to Edney IV shock impingement and intersecting shocks: 2003—0031[R]. Reston: AIAA, 2003. |
64 | ADELGREN R G, YAN H, ELLIOTT G S, et al. Control of Edney IV interaction by pulsed laser energy deposition[J]. AIAA Journal, 2005, 43(2): 256-269. |
65 | KNIGHT D, ADELGREN R G, ELLIOTT G S, et al. Laser energy deposition in Edney IV interaction[M]∥ Shock Waves. Berlin: Springer Berlin Heidelberg, 2005: 89-94. |
66 | YAN H, GAITONDE D. Control of Edney IV interaction by energy pulse: AIAA-2006-0562[R]. Reston: AIAA, 2006. |
67 | KOGAN M N, STARODUBTSEV M A. Reduction of peak heat fluxes by supplying heat to the free stream[J]. Fluid Dynamics, 2003, 38(1): 115-125. |
68 | 吴文堂, 洪延姬, 王殿恺, 等. 激光能量注入控制IV型激波干扰的数值研究[J]. 强激光与粒子束, 2014, 26(2): 50-55. |
WU W T, HONG Y J, WANG D K, et al. Numerical investigation of type IV shock interaction controlled by laser energy deposition[J]. High Power Laser and Particle Beams, 2014, 26(2): 50-55 (in Chinese). | |
69 | 王殿恺, 洪延姬, 任玉新, 等. 高重频激光控制IV型激波干扰方法研究[J]. 推进技术, 2015, 36(10): 1459-1464. |
WANG D K, HONG Y J, REN Y X, et al. Flow control method of type IV interaction with high rated laser energy[J]. Journal of Propulsion Technology, 2015, 36(10): 1459-1464 (in Chinese). | |
70 | XIE W, LUO Z B, ZHOU Y, et al. Experimental study on shock wave control in high-enthalpy hypersonic flow by using SparkJet actuator[J]. Acta Astronautica, 2021, 188: 416-425. |
71 | TANG M X, WU Y, WANG H Y. Experimental investigation on hypersonic shock-shock interaction control using plasma actuator array[J]. Acta Astronautica, 2022, 198: 577-586. |
72 | KONG Y K, LI J, WU Y, et al. Experimental study on shock-shock interaction over double wedge controlled by surface arc plasma array[J]. Contributions to Plasma Physics, 2022, 62(9): e202200062. |
73 | 张传标, 梁华, 郭善广, 等. 高能电弧等离子体激励控制双压缩拐角激波/边界层干扰实验研究[J]. 推进技术, 2022, 43(10): 213-228. |
ZHANG C B, LIANG H, GUO S G, et al. Experimental study on double compression ramp shock wave/boundary layer interaction controlled by high-energy streamwise pulsed arc discharge array[J]. Journal of Propulsion Technology, 2022, 43(10): 213-228 (in Chinese). | |
74 | 罗凯, 王永海, 汪球, 等. 高焓风洞中等离子体激励流动控制试验[J]. 航空学报, 2022, 43(S2): 92-99. |
LUO K, WANG Y H, WANG Q, et al. Plasma-actuated flow control test in high enthalpy shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 92-99 (in Chinese). | |
75 | SURZHIKOV S T. Hypersonic flow past sharp plate and double wedge with an electromagnetic actuator[J]. Fluid Dynamics, 2020, 55(6): 825-839. |
76 | 罗凯, 汪球, 李逸翔, 等. 基于高温气体效应的磁流体流动控制研究进展[J]. 力学学报, 2021, 53(6): 1515-1531. |
LUO K, WANG Q, LI Y X, et al. Research progress on magnetohydrodynamic flow control under test conditions with high temperature real gas effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531 (in Chinese). | |
77 | 罗凯, 汪球, 李进平, 等. 基于高温真实气体效应的双锥磁流体流动控制[J]. 航空学报, 2022, 43(S2): 79-91. |
LUO K, WANG Q, LI J P, et al. Magnetohydrodynamic flow control of double-cone under high temperature real gas effect[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S2): 79-91 (in Chinese). | |
78 | LI S, YAN C, KANG D K, et al. Investigation of flow control methods for reducing heat flux on a V-shaped blunt leading edge under real gas effects[J]. Physics of Fluids, 2023, 35(3): 036113. |
79 | 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917. |
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese). | |
80 | 时晓天, 吕蒙, 赵渊, 等. 激波/湍流边界层干扰的流动控制技术综述[J]. 航空学报, 2022, 43(1): 625929. |
SHI X T, LYU M, ZHAO Y, et al. Flow control technique for shock wave/turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625929 (in Chinese). | |
81 | 吴瀚, 王建宏, 黄伟, 等. 激波/边界层干扰及微型涡流发生器控制研究进展[J]. 航空学报, 2021, 42(6): 025371. |
WU H, WANG J H, HUANG W, et al. Research progress on shock wave/boundary layer interactions and flow controls induced by micro vortex generators[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 025371 (in Chinese). | |
82 | 张悦, 谭慧俊, 王子运, 等. 进气道内激波/边界层干扰及控制研究进展[J]. 推进技术, 2020, 41(2): 241-259. |
ZHANG Y, TAN H J, WANG Z Y, et al. Progress of shock wave/boundary layer interaction and its control in inlet[J]. Journal of Propulsion Technology, 2020, 41(2): 241-259 (in Chinese). | |
83 | VERMA S B, MANISANKAR C. Shock wave/boundary-layer interaction control on a compression ramp using steady micro jets[J]. AIAA Journal, 2012, 50(12): 2753-2764. |
84 | DU Z B, SHEN C B, HUANG W, et al. Control mechanism of the three-dimensional shock wave/boundary layer interaction with the steady and pulsed micro-jets in a supersonic crossflow[J]. Physics of Fluids, 2022, 34(8): 086109. |
85 | 徐浩, 杜兆波, 钟翔宇, 等. 超声速气流中激波/边界层干扰微射流控制研究进展[J]. 航空兵器, 2022, 29(4): 83-90. |
XU H, DU Z B, ZHONG X Y, et al. Research progress of microjet control of shock wave/boundary layer interactions in supersonic flow field[J]. Aero Weaponry, 2022, 29(4): 83-90 (in Chinese). | |
86 | LIU Q, LUO Z B, DENG X, et al. Fine structures of self-sustaining dual jets in supersonic crossflow[J]. Acta Astronautica, 2019, 164: 262-267. |
87 | LIU Q, LUO Z B, DENG X, et al. Vortical structures and density fluctuations analysis of supersonic forward-facing step controlled by self-sustaining dual synthetic jets[J]. Acta Mechanica Sinica, 2020, 36(6): 1215-1227. |
88 | LIU Q, XIE W, LUO Z B, et al. Flow structures and unsteadiness in hypersonic shock wave/turbulent boundary layer interaction subject to steady jet[J]. Acta Mechanica Sinica, 2023, 39(5): 323202. |
89 | DU Z B, SHEN C B, SHEN Y, et al. Design exploration on the shock wave/turbulence boundary layer control induced by the secondary recirculation jet[J]. Acta Astronautica, 2021, 181: 468-481. |
90 | 严红, 王松. 热激励在超声速进气道内对激波诱导的边界层分离的控制机理[J]. 空气动力学学报, 2014, 32(6): 806-813. |
YAN H, WANG S. Control of shock/boundary layer interaction in supersonic inlet using thermal excitation[J]. Acta Aerodynamica Sinica, 2014, 32(6): 806-813 (in Chinese). | |
91 | TANG M X, WU Y, GUO S G, et al. Compression ramp shock wave/boundary layer interaction control with high-frequency streamwise pulsed spark discharge array[J]. Physics of Fluids, 2020, 32(12): 121704. |
92 | MA X G, FAN J A, WU Y K, et al. Flow control effect of pulsed arc discharge plasma actuation on impinging shock wave/boundary layer interaction[J]. Physics of Fluids, 2023, 35(3): 036110. |
93 | GAN T, WANG Q. Mechanisms of SWBLI control by using a surface arc plasma actuator array[J]. Experimental Thermal and Fluid Science, 2021, 128: 110428. |
94 | ZHANG C B, YANG H S, LIANG H, et al. Plasma-based experimental investigation of double compression ramp shock wave/boundary layer interaction control[J]. Journal of Physics D: Applied Physics, 2022, 55(32): 325202. |
95 | 王林, 罗振兵, 夏智勋, 等. 高速流场主动流动控制激励器研究进展[J]. 中国科学: 技术科学, 2012, 42(10): 1103-1119. |
WANG L, LUO Z B, XIA Z X, et al. Research progress of active flow control actuator for high-speed flow field[J]. Scientia Sinica (Technologica), 2012, 42(10): 1103-1119 (in Chinese). | |
96 | NARAYANASWAMY V, RAJA L L, CLEMENS N T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator[J]. Physics of Fluids, 2012, 24(7): 076101. |
97 | WANG H Y, LI J, JIN D, et al. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation[J]. Acta Astronautica, 2018, 142: 45-56. |
98 | LUO Y H, LI J, LIANG H, et al. Suppressing unsteady motion of shock wave by high-frequency plasma synthetic jet[J]. Chinese Journal of Aeronautics, 2021, 34(9): 60-71. |
99 | 马正雪. 火花放电合成射流及其激波/边界层干扰控制直接数值模拟研究[D]. 长沙: 国防科技大学, 2022. |
MA Z X. Direct numerical simulation study of SparkJet and its shock wave/boundary layer interference control[D]. Changsha: National University of Defense Technology, 2022 (in Chinese). | |
100 | MEARS L, ARORA N, ALⅥ F S. Introducing controlled perturbations in a 3-D swept shock boundary layer interaction[C]∥ Proceedings of the 2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018. |
101 | DESHPANDE A S, POGGIE J. Flow control of swept shock-wave/boundary-layer interaction using plasma actuators[J]. Journal of Spacecraft and Rockets, 2018, 55(5): 1198-1207. |
102 | YANG H S, ZONG H H, LIANG H, et al. Swept shock wave/boundary layer interaction control based on surface arc plasma[J]. Physics of Fluids, 2022, 34(8): 087119. |
103 | 张刘, 黄勇, 陈辅政, 等. 基于环量控制的无尾飞翼俯仰和滚转两轴无舵面姿态控制飞行试验[J]. 航空学报, 2023, 44(22): 128224. |
ZHANG L, HUANG Y, CHEN F Z, et al. Rudderless at titude control flight test based on circulation control of tail-less flying wing in pitch and roll axes[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 128224 (in Chinese). | |
104 | LUO Z B, ZHAO Z J, LIU J F, et al. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test[J]. Chinese Journal of Aeronautics, 2022, 35(8): 1-6. |
105 | 赵志杰, 罗振兵, 刘杰夫, 等. 基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验[J]. 力学学报, 2022, 54(5): 1220-1228. |
ZHAO Z J, LUO Z B, LIU J F, et al. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1220-1228 (in Chinese). | |
106 | Air & Space Forces Association[EB/OL]. [2023-05-16]. . |
107 | 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. |
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese). | |
108 | 任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021, 42(4): 524686. |
REN F, GAO C Q, TANG H. Machine learning for flow control: Applications and development trends[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524686 (in Chinese). | |
109 | FERNEX D, NOACK B R, SEMAAN R. Cluster-based network modeling—From snapshots to complex dynamical systems[J]. Science Advances, 2021, 7(25): eabf5006. |
110 | CORNEJO MACEDA G Y, VARON E, LUSSEYRAN F, et al. Stabilization of a multi-frequency open cavity flow with gradient-enriched machine learning control[J]. Journal of Fluid Mechanics, 2023, 955: A20. |
/
〈 |
|
〉 |