流体力学与飞行力学

基于钝体扰流的氢气微混扩散燃烧组织研究

  • 莫妲 ,
  • 林宇震 ,
  • 马宏宇 ,
  • 韩啸 ,
  • 刘一雄
展开
  • 1.北京航空航天大学 航空发动机研究院 航空发动机气动热力国家级重点实验室,北京 100191
    2.先进航空发动机协同创新中心,北京 100191
    3.中国航发沈阳发动机研究所,沈阳 110015
.E-mail: han_xiao@buaa.edu.cn

收稿日期: 2023-04-24

  修回日期: 2023-05-09

  录用日期: 2023-05-23

  网络出版日期: 2023-06-21

基金资助

先进航空动力创新工作站(HKCX2021-01-021);中央高校基本科研业务费专项资金;航空发动机及燃气轮机基础科学中心项目(P2022-A-Ⅱ-006-001)

Investigation on hydrogen micromix diffusive combustion organization based on bluff body disturbance

  • Da MO ,
  • Yuzhen LIN ,
  • Hongyu MA ,
  • Xiao HAN ,
  • Yixiong LIU
Expand
  • 1.National Key Laboratory of Science and Technology on Aero-Engine Aero-thermodynamics,Research Institute of Aero-Engine,Beihang University,Beijing 100191,China
    2.Collaborative Innovation Center for Advanced Aero-Engine,Beijing 100191,China
    3.AECC Shenyang Engine Research Institute,Shenyang 110015,China

Received date: 2023-04-24

  Revised date: 2023-05-09

  Accepted date: 2023-05-23

  Online published: 2023-06-21

Supported by

Advanced Jet Propulsion Innovation Center, AEAC(HKCX2021-01-021);The Fundamental Research Funds for the Central Universities;Science Center for Gas Turbine Project (P2022-A-Ⅱ-006-001)

摘要

氢气是实现航空发动机零碳排放最具有应用潜力的燃料之一,本文提出一种蜂巢钝体微混扩散燃烧结构,内置微型钝体扰流主流空气,以增强与氢气掺混。采用k-ω 剪切应力输运(SST)湍流模型和火焰面生成流行方法(FGM)中的扩散火焰方法,数值仿真模拟了基准方案在无氢气喷注、冷态、热态工况下的流动燃烧特性,详细分析了微混单元气动热力过程。建立了基于响应面预测和遗传算法的蜂巢微混单元优化设计流程,以钝体角度和钝体出口高度为约束条件,NO x 排放最低为优化目标,获得了NO x 排放的影响规律和最优方案。研究结果表明:钝体三维尾迹涡耦合氢气射流涡可显著增强主流扰动和掺混,氢气射流涡受工况和结构参数影响较大,钝体出口高度是影响NO x 生成的敏感性参数,在2 030 kPa和818 K的进气条件下,最优方案在15%含氧量条件下NO x 的体积浓度低于5×10-6

关键词: 氢气; 微混燃烧; NO x; 钝体; 涡量

本文引用格式

莫妲 , 林宇震 , 马宏宇 , 韩啸 , 刘一雄 . 基于钝体扰流的氢气微混扩散燃烧组织研究[J]. 航空学报, 2024 , 45(8) : 128928 -128928 . DOI: 10.7527/S1000-6893.2023.28928

Abstract

Hydrogen is one of the fuels with the most potential to achieve zero carbon emission of aero-engines. In this paper, a micromix diffusive combustion structure based on the honeycomb bluff body is proposed. The micro bluff body is built in the honeycomb to disturb the mainstream air and enhance its mixing with hydrogen. The flow and combustion characteristics of the standard scheme without hydrogen injection, the cold field, and the hot field are simulated using the k-ω Shear Stress Transfer (SST) turbulence model and the diffusion flame method in Flamelet Generated Manifold (FGM). The aerothermal process of the micromixing unit is analyzed. The optimal design process of the honeycomb bluff body element is established based on Genetic aggregation approximate model. The design variables are angle and height of the bluff body whereas the minimum NO x emission is the optimization objective. The influences of the parameters on NO x emission and the optimal scheme are obtained. Results show that reverse rotating vortex pairs and three-dimensional jet vortices are formed in the cross section when hydrogen is injected into the high-speed mainstream air, the turbulent disturbance and hydrogen and air mixing are significantly enhanced, the hydrogen jet vortex is considerably affected by the working conditions and structure parameters, and the height of the bluff body is the sensitive parameter affecting the formation of NO x . Under the intake condition of 2 030 kPa and 818 K, the NO x emission of the optimal case is lower than 5×10-6 under the 15% O2 content condition.

参考文献

1 WEILAND N T, SIDWELL T G, STRAKEY P A. Testing of a hydrogen dilute diffusion array injector at gas turbine conditions[C]∥ Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition.New York:ASME, 2012.
2 MAREK C, SMITH T, KUNDU K. Low emission hydrogen combustors for gas turbines using lean direct injection :AIAA-2005-3776 [R]. Reston: AIAA, 2005.
3 ASAI T, DODO S, KOIZUMI H, et al. Effects of multiple-injection-burner configurations on combustion characteristics for dry low-NO x combustion of hydrogen-rich fuels[C]∥ Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition.New York:ASME, 2012.
4 LEE H, HERNANDEZ S, MCDONELL V, et al. Development of flashback resistant low-emission micro-mixing fuel injector for 100% hydrogen and syngas fuels[C]∥ Proceedings of ASME Turbo Expo 2009: Power for Land, Sea, and Air. New York:ASME, 2010.
5 YORK W D, ZIMINSKY W S, YILMAZ E. Development and testing of a low NOx hydrogen combustion system for heavy-duty gas turbines[J]. Journal of Engineering for Gas Turbines and Power2013135(2): 022001.
6 KARAKURT A. Parametric investigation of combustion characteristics of hydrogen micromix combustor concept[D]. Bedford: Cranfield University, 2012: 16-20.
7 MURTHY P. Numerical study of hydrogen micro-mix combustors for aero gas turbine engines[D]. Bedford: Cranfield University, 2010: 29-33.
8 孙晓峰, 张光宇, 王晓宇, 等. 航空发动机燃烧不稳定性预测及控制研究进展[J]. 航空学报202344(13):628733.
  SUN X F, ZHANG G Y, WANG X Y, et al. Research progress in aero-engine combustion instability prediction and control[J]. Acta Aeronautica et Astronautica Sinica202344(13):628733 (in Chinese).
9 LIU X W, SHAO W W, LIU Y, et al. Cold flow characteristics of a novel high-hydrogen Micromix model burner based on multiple confluent turbulent round jets[J]. International Journal of Hydrogen Energy202146(7): 5776-5789.
10 王阳墚旭, 陈洁, 马榕谷, 等. 燃氢燃气轮机燃烧室结构改进[J]. 热力发电201645(8): 53-57.
  WANG Y L X, CHEN J, MA R G, et al. Structure modification for combustor in gas turbine turning to burn hydrogen gas[J]. Thermal Power Generation201645(8): 53-57 (in Chinese).
11 田晓晶, 崔玉峰, 房爱兵, 等. 预混段结构对氢燃料旋流预混燃烧诱导涡破碎回火极限影响的数值研究[J]. 中国电机工程学报201434(8): 1276-1284.
  TIAN X J, CUI Y F, FANG A B, et al. Numerical investigation on the effects of mixing zone structure on combustion induced vortex breakdown flashback limits of a swirl-premixed hydrogen flame[J]. Proceedings of the CSEE201434(8): 1276-1284 (in Chinese).
12 于宗明, 吴鑫楠, 邱朋华, 等. 燃气轮机富氢燃料预混燃烧实验研究[J]. 中国电机工程学报201737(5): 1426-1434.
  YU Z M, WU X N, QIU P H, et al. Experimental study on premixed combustion for gas turbines burning high hydrogen fuels[J]. Proceedings of the CSEE201737(5): 1426-1434 (in Chinese).
13 FUNKE H H W, BECKMANN N, KEINZ J, et al. 30 years of dry-low-NO x micromix combustor research for hydrogen-rich fuels—An overview of past and present activities[J]. Journal of Engineering for Gas Turbines and Power2021143(7): 071002.
14 BOERNER S, FUNKE H H W, HENDRICK P, et al. Development and integration of a scalable low NOx combustion chamber for a hydrogen-fueled aerogas turbine[J]. EUCASS Proceedings Series20134: 357-372.
15 HORIKAWA A, OKADA K, UTO T, et al. Application of low NOx micro-mix hydrogen combustion to 2MW class industrial gas turbine combustor[C]∥Proceedings of International Gas Turbine Congress. Tokyo: Gas Turbine Society of Japan, 2019.
16 FUNKE H H W, BECKMANN N, ABANTERIBA S. An overview on dry low NOx micromix combustor development for hydrogen-rich gas turbine applications[J]. International Journal of Hydrogen Energy201944(13): 6978-6990.
17 FUNKE H H W, BOERNER S, KEINZ J, et al. Experimental and numerical characterization of the dry low NOx micromix hydrogen combustion principle at increased energy density for industrial hydrogen gas turbine applications[C]∥ Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition.New York:ASME, 2013.
18 FUNKE H H W, BOERNER S, KREBS W, et al. Experimental characterization of low NOx micromix prototype combustors for industrial gas turbine applications[C]∥ Proceedings of ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York:ASME, 2011.
19 SUN X X, AGARWAL P, CARBONARA F, et al. Numerical investigation into the impact of injector geometrical design parameters on hydrogen micromix combustion characteristics[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York:ASME, 2021.
20 MCCLURE J, ABBOTT D, AGARWAL P, et al. Comparison of hydrogen micromix flame transfer functions determined using RANS and LES[C]∥ Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York:ASME, 2019.
21 ZGHAL M, SUN X, GAUTHIER P Q, et al. Comparison of tabulated and complex chemistry turbulent-chemistry interaction models with high fidelity large eddy simulations on hydrogen flames[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York:ASME, 2021.
22 ANASYS. ANSYS reaction design [M]. San Diego: ANSYS Inc, 2016: 28-201.
23 莫妲, 尚守堂, 林宇震, 等. 一种氢燃料微尺度非预混燃烧室数值模拟[J]. 航空动力学报202338(11): 2701-2710.
  MO D, SHANG S T, LIN Y Z, et al. Numerical simulation investigation on a hydrogen micromix combustor[J]. Journal of Aerospace Power202338(11): 2701-2710 (in Chinese).
24 GAUTHIER P Q. Comparison of temperature fields and emissions predictions using both an FGM combustion model, with detailed chemistry, and a simple eddy dissipation combustion model with simple global chemistry[C]∥ Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York:ASME, 2017.
25 王义乾, 桂南. 第三代涡识别方法及其应用综述[J]. 水动力学研究与进展(A辑)201934(4): 413-429.
  WANG Y Q, GUI N. A review of the third-generation vortex identification method and its applications[J]. Chinese Journal of Hydrodynamics201934(4): 413-429 (in Chinese).
26 ZHANG Y N, LIU K H, XIAN H Z, et al. A review of methods for vortex identification in hydroturbines[J]. Renewable and Sustainable Energy Reviews201881: 1269-1285.
27 LEFEBVRE H. Gas turbine combustion - alternative fuels and emissions [M]. 3rd edition. Boca Raton: CRC Press, 2010: 124-127.
28 PUDSEY A S, BOYCE R R, WHEATLEY V. Hypersonic viscous drag reduction via multiporthole injector arrays[J]. Journal of Propulsion and Power201329(5): 1087-1096.
29 岑可法, 姚强,骆仲泱,等. 燃烧理论与污染控制[M]. 2版. 北京: 机械工业出版社, 2019: 254-255.
  CEN K F, YAO Q, LUO Z Y,et al. Combustion theory and emission control[M]. 2nd ed. Beijing: China Machine Press, 2019: 254-255 (in Chinese).
30 王志凯, 陈盛, 范玮. 神经网络宽度对燃烧室排放预测的影响[J]. 航空学报202344(5): 126816.
  WANG Z K, CHEN S, FAN W. Effect of neural network width on combustor emission prediction[J]. Acta Aeronautica et Astronautica Sinica202344(5): 126816 (in Chinese).
31 LIU Y X, CONG P H, WU Y W, et al. Failure analysis and design optimization of shrouded fan blade[J]. Engineering Failure Analysis2021122: 105208.
32 GUO Y, LIU Y X, WU Y W, et al. Design optimization and burst speed prediction of a Ti2AlNb blisk[J]. International Journal of Aerospace Engineering20212021: 3290518.
33 LIU Y X, NALIANDA D, MO D, et al. Multi-objective optimization of a three-shaft high bypass ratio engine for EIS2050[C]∥ Proceedings of Global Power & Propulsion Society. 2022.
34 LIU Y X. Optimization of hybrid electric propulsion system[D]. Bedford: Cranfield University, 2021:44-46.
35 ZELDOVICH Y. The oxidation of nitrogen in combustion and explosions[J]. Acta Physicochimica Sinica194621(3):577-628.
36 FENIMORE C P. Formation of nitric oxide in premixed hydrocarbon flames[J]. Symposium (International) on Combustion197113(1): 373-380.
37 齐飞, 李玉阳, 苑文浩. 燃烧反应动力学[M]. 北京: 科学出版社, 2021: 1-100.
  QI F, LI Y Y, YUAN W H. Combustion reaction kinetics[M]. Beijing: Science Press, 2021: 1-100 (in Chinese).
文章导航

/