论文

圆截面超声速燃烧室乙烯燃料喷注火焰结构和模式分析

  • 汤涛 ,
  • 于江飞 ,
  • 黄玉辉 ,
  • 汪洪波 ,
  • 孙明波 ,
  • 赵国焱 ,
  • 熊大鹏 ,
  • 王振国
展开
  • 1.国防科技大学 空天科学学院,长沙 410073
    2.装备发展部 项目管理中心,北京 100083
.E-mail: sunmingbo@nudt.edu.cn

收稿日期: 2023-04-17

  修回日期: 2023-05-06

  录用日期: 2023-06-16

  网络出版日期: 2023-06-21

基金资助

国家自然科学基金(11925207)

Analysis of structure and regime of ethylene fuel injection flame in circular⁃section supersonic combustor

  • Tao TANG ,
  • Jiangfei YU ,
  • Yuhui HUANG ,
  • Hongbo WANG ,
  • Mingbo SUN ,
  • Guoyan ZHAO ,
  • Dapeng XIONG ,
  • Zhenguo WANG
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.Equipment Project Management Center,Equipment Development Department,Beijing 100083,China

Received date: 2023-04-17

  Revised date: 2023-05-06

  Accepted date: 2023-06-16

  Online published: 2023-06-21

Supported by

National Natural Science Foundation of China(11925207)

摘要

采用耦合了火焰面/进度变量模型的混合RANS/LES方法对高马赫数下的乙烯燃料圆截面超燃冲压发动机燃烧流场开展了数值研究,计算结果显示出与试验高度一致的燃烧结构和释热特征。在此基础上,分析结果表明:流场的混合过程由大尺度流动结构主导,流道中心的激波系是促进涡量产生、燃料掺混以及下游反应区褶皱的直接原因。凹腔在此构型和工况中没有直接参与释热,而是起到了诱导激波产生从而促进混合和燃烧的作用。整体上,燃烧呈现时空多尺度特征,火焰在向下游传播的过程中逐渐向近平衡状态发展。超燃模态和扩散燃烧主导了整个反应区,并且大部分快反应区燃烧处于波纹板式火焰面模式。

本文引用格式

汤涛 , 于江飞 , 黄玉辉 , 汪洪波 , 孙明波 , 赵国焱 , 熊大鹏 , 王振国 . 圆截面超声速燃烧室乙烯燃料喷注火焰结构和模式分析[J]. 航空学报, 2024 , 45(11) : 528880 -528880 . DOI: 10.7527/S1000-6893.2023.28880

Abstract

In this study, a hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) approach coupled with an improved Flamelet/Progress Variable model is used to numerically investigate the combustion flow field of an ethylene-fueled circular-section model scramjet at high Mach numbers. The computational results show highly consistent combustion structure and heat release characteristics with those from the experiments. On this basis, the analysis results indicate that the mixing process of the flow field is dominated by the large-scale flow structures, and the shock train at the center of the channel is the direct cause of promoting vorticity generation, fuel mixing, and downstream reaction zone wrinkling. In this case, the cavity does not directly participate in the heat release process, but rather plays a role in inducing shock waves and promoting mixing and combustion. Overall, combustion exhibits spatiotemporal multi-scale characteristics, and flames gradually develop towards a near equilibrium state as they propagate downstream. The scramjet mode and diffusion combustion dominate the entire reaction zone, and most of the fast-chemistry combustion is in the corrugated flamelets regime.

参考文献

1 左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报202142(8): 525798.
  ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525798 (in Chinese).
2 AN B, YANG L C, WANG Z G, et al. Characteristics of laser ignition and spark discharge ignition in a cavity-based supersonic combustor[J]. Combustion and Flame2020212: 177-188.
3 彭瀚, 黄玥, 刘晨, 等. 横向射流影响缓燃向爆震转捩过程的试验研究[J]. 航空学报201839(2): 121412.
  PENG H, HUANG Y, LIU C, et al. Experimental study of effects of fluidic obstacle parameters on deflagration-to-detonation transition[J]. Acta Aeronautica et Astronautica Sinica201839(2): 121412 (in Chinese).
4 王璐, 高亮杰, 钱战森, 等. 低马赫数下多凹腔燃烧室非稳态燃烧过程[J]. 航空学报201637(S1): 112-118.
  WANG L, GAO L J, QIAN Z S, et al. Unsteady combustion process of multi-cavity combustion chamber at low Mach number[J]. Acta Aeronautica et Astronautica Sinica201637(S1): 112-118 (in Chinese).
5 WANG H B, SONG X L, LI L, et al. Lean blowoff behavior of cavity-stabilized flames in a supersonic combustor[J]. Aerospace Science and Technology2021109: 106427.
6 WALTRUP P J, WHITE M E, ZARLINGO F, et al. History of U.S. navy ramjet, scramjet, and mixed-cycle propulsion development[J]. Journal of Propulsion and Power200218(1): 14-27.
7 FOELSCHE R, LEYLEGIAN J, BETTI A, et al. Progress on the development of a freeflight atmospheric scramjet test technique[C]∥ Proceedings of the AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston: AIAA, 2005.
8 WALKER S, RODGERS F, PAULL A, et al. HyCAUSE flight test program[C]∥ Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008.
9 BISEK N J. High-fidelity simulations of the HIFiRE-6 flow path[C]∥ Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
10 CHAN W Y K, RAZZAQI S A, TURNER J C, et al. Freejet testing of the HIFiRE 7 scramjet flowpath at Mach 7.5[J]. Journal of Propulsion and Power201834(4): 844-853.
11 VANYAI T, GRIEVE S, STREET O, et al. Fundamental scramjet combustion experiments using hydrocarbon fuel[J]. Journal of Propulsion and Power201935(5): 953-963.
12 VANYAI T, LANDSBERG W O, MCINTYRE T J, et al. OH visualization of ethylene combustion modes in the exhaust of a fundamental, supersonic combustor[J]. Combustion and Flame2021226: 143-155.
13 LIU Q L, BACCARELLA D, LANDSBERG W, et al. Cavity flameholding in an optical axisymmetric scramjet in Mach 4.5 flows[J]. Proceedings of the Combustion Institute201937(3): 3733-3740.
14 LIU Q L, BACCARELLA D, LEE T H. Combustion stabilization in an axisymmetric scramjet in Mach 4.5 flows[C]∥ Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
15 LIU Q L, BACCARELLA D, MCGANN B, et al. Dual-mode operation and transition in axisymmetric scramjets[J]. AIAA Journal201957(11): 4764-4777.
16 BACCARELLA D, LIU Q L, MCGANN B J, et al. Combustion induced choking and unstart initiation in a circular constant-area supersonic flow[J]. AIAA Journal201957(12): 5365-5376.
17 BACCARELLA D, LIU Q, MCGANN B, et al. Isolator-combustor interactions in a circular model scramjet with thermal and non-thermal choking-induced unstart[J]. Journal of Fluid Mechanics2021917: A38.
18 LANDSBERG W O, GIBBONS N N, WHEATLEY V, et al. Flow field manipulation via fuel injectors in scramjets[C]∥ Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
19 LANDSBERG W O, GIBBONS N N, WHEATLEY V, et al. Improving scramjet performance through flow field manipulation[J]. Journal of Propulsion and Power201834(3): 578-590.
20 LANDSBERG W O, WHEATLEY V, SMART M K, et al. Performance of high Mach number scramjets - Tunnel vs flight[J]. Acta Astronautica2018146: 103-110.
21 LANDSBERG W O, WHEATLEY V, SMART M K, et al. Enhanced supersonic combustion targeting combustor length reduction in a Mach 12 scramjet[J]. AIAA Journal201856(10): 3802-3807.
22 DAMM K A, LANDSBERG W O, MECKLEM S, et al. Performance analysis and validation of an explicit local time-stepping algorithm for complex hypersonic flows[J]. Aerospace Science and Technology2020107: 106321.
23 马光伟, 孙明波, 赵国焱, 等. 不同壁温及差分格式下超燃冲压发动机的仿真[J]. 航空学报202142(S1): 16-27.
  MA G W, SUN M B, ZHAO G Y, et al. Simulation of scramjet under different wall temperatures and difference schemes[J]. Acta Aeronautica et Astronautica Sinica202142(S1): 16-27 (in Chinese).
24 LUO S J, NI Z Y, LIU Y F. Study on the characteristics of interaction flowfields induced by supersonic jet on a revolution body[J]. Theoretical and Applied Mechanics Letters20177(6): 362-365.
25 BACCARELLA D, LIU Q L, LEE T H, et al. The supersonic combustion facility ACT-2[C]∥ Proceedings of the 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
26 DAI P, CHEN Z. Effects of NOx addition on autoignition and detonation development in DME/air under engine-relevant conditions[J]. Proceedings of the Combustion Institute201937(4): 4813-4820.
27 HASH C A, DRUMMOND P M, EDWARDS J R, et al. Numerical simulation of stable and unstable ram-mode operation of an axisymmetric ethylene-fueled inlet-isolator-combustor configuration[J]. Combustion and Flame2022242: 112157.
28 TANG T, WANG H B, SUN M B, et al. Evaluation of flamelet/progress variable model for the applications in supersonic combustion using hybrid RANS/LES approach[J]. Aerospace Science and Technology2022126: 107633.
29 MA G W, SUN M B, ZHAO G Y, et al. Effect of injection scheme on asymmetric phenomenon in rectangular and circular scramjets[J]. Chinese Journal of Aeronautics202236(1): 216-230.
30 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
31 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报201536(1): 261-273.
  YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica201536(1): 261-273 (in Chinese).
32 PITSCH H. FlameMaster: A C++ computer program for 0D combustion and 1D laminar flame calculations[EB/OL]. [2023-06-16]. .
33 SAGHAFIAN A, TERRAPON V E, PITSCH H. An efficient flamelet-based combustion model for compressible flows[J]. Combustion and Flame2015162(3): 652-667.
34 CAO C M, YE T H, ZHAO M J. Large eddy simulation of hydrogen/air scramjet combustion using tabulated thermo-chemistry approach[J]. Chinese Journal of Aeronautics201528(5): 1316-1327.
35 ZHAO G Y, SUN M B, WU J S, et al. A flamelet model for supersonic non-premixed combustion with pressure variation[J]. Modern Physics Letters B201529(21): 1550117.
36 TANG T, WANG Z G, HUANG Y H, et al. Investigation of combustion structure and flame stabilization in an axisymmetric scramjet[J]. AIAA Journal202361(2): 585-601.
37 LI L, WANG H B, ZHAO G Y, et al. Efficient WENOCU4 scheme with three different adaptive switches[J]. Journal of Zhejiang University: Science A202021(9): 695-720.
38 TANG T, WANG Z G, LI H S, et al. A method for optimizing reaction progress variable and its application[J]. Aerospace Science and Technology2022130: 107888.
39 MA G W, SUN M B, ZHAO G Y, et al. Numerical investigation of an axisymmetric model scramjet assisted with cavity of different aft wall angles[J]. International Journal of Aerospace Engineering20212021: 7525824.
40 POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
41 KAWAI S, LELE S K. Large-eddy simulation of jet mixing in supersonic crossflows[J]. AIAA Journal201048(9): 2063-2083.
42 LIU Q L, BACCARELLA D, MCGANN B, et al. Cavity-enhanced combustion stability in an axisymmetric scramjet model[J]. AIAA Journal201957(9): 3898-3909.
43 YAMASHITA H, SHIMADA M, TAKENO T. A numerical study on flame stability at the transition point of jet diffusion flames[J]. Symposium (International) on Combustion199626(1): 27-34.
44 BALAKRISHNAN G, WILLIAMS F A. Turbulent combustion regimes for hypersonic propulsion employing hydrogen-air diffusion flames[J]. Journal of Propulsion and Power199410(3): 434-437.
45 MURA A, TECHER A, LEHNASCH G. Analysis of high-speed combustion regimes of hydrogen jet in supersonic vitiated airstream[J]. Combustion and Flame2022239: 111552.
46 INGENITO A, BRUNO C. Physics and regimes of supersonic combustion[J]. AIAA Journal201048(3): 515-525.
文章导航

/