论文

螺旋桨多设计点气动优化方法和变桨距角策略

  • 王海峰 ,
  • 刘坤澎 ,
  • 江泓鑫 ,
  • 杜晨曦
展开
  • 1.西北工业大学 航空学院,西安 710072
    2.中国工程物理研究院 流体物理研究所,绵阳 621900
.E-mail: hfwang@nwpu.edu.cn

收稿日期: 2023-04-06

  修回日期: 2023-05-15

  录用日期: 2023-06-12

  网络出版日期: 2023-06-21

Aerodynamic optimization method of propeller multi⁃design points and variable pitch angle strategy

  • Haifeng WANG ,
  • Kunpeng LIU ,
  • Hongxin JIANG ,
  • Chenxi DU
Expand
  • 1.School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.Institute of Fluid Physics,China Academy of Engineering Physics,Mianyang 621900,China
E-mail: hfwang@nwpu.edu.cn

Received date: 2023-04-06

  Revised date: 2023-05-15

  Accepted date: 2023-06-12

  Online published: 2023-06-21

摘要

高空太阳能无人机(UAV)在起飞爬升阶段飞行速度慢,爬升率低,爬升时间很长,需要螺旋桨提供大拉力以实现快速爬升,但低空空气密度大,螺旋桨处于小转速、大扭矩状态。在20 km高空飞行阶段,空气密度只有地面的1/14,要求螺旋桨处于高转速、高效率状态。受动力系统的功率限制,定桨距螺旋桨无法匹配这2种状态,需要采用变桨距技术,实现低空的小桨距、低转速、大拉力构型,高空的大桨距、高转速、高效率构型。提出了一种满足多设计点螺旋桨气动外形优化方法和多工况变桨距角策略。建立了基于片条理论的螺旋桨多设计点气动外形优化模型,实现了螺旋桨各剖面弦长和扭转角分布等外形参数优化;在此模型上加入了考虑桨距角变化的快速气动计算模型,实现了多工况下变桨距角策略。通过对比定桨距和变桨距下的螺旋桨气动性能,结果表明,基于螺旋桨多设计点气动外形优化模型设计的螺旋桨在高空多设计点效率均在80%以上,有利于太阳能无人机的长时间飞行;考虑变桨距优化策略的螺旋桨,在起飞爬升工况拉力最高提升78.42%,可以提供更大的爬升率,有利于太阳能无人机在起飞时快速通过对流层到达高空设计点飞行。

本文引用格式

王海峰 , 刘坤澎 , 江泓鑫 , 杜晨曦 . 螺旋桨多设计点气动优化方法和变桨距角策略[J]. 航空学报, 2024 , 45(9) : 528831 -528831 . DOI: 10.7527/S1000-6893.2023.28831

Abstract

The high-altitude solar powered Unmanned Aerial Vehicle(UAV) has a slow flight speed, low climb rate and long climb time in the take-off and climb stage, the propeller needs to provide large pull force to achieve fast climb. However, the low-altitude air density is high, and the propeller is in the state of low speed and high torque. At the altitude of 20 km, the air density is only 1/14 of the ground, requiring the propeller to be in a state of high speed and high efficiency. Due to the power limitation of the power system, fixed-pitch propellers cannot match these two states, so variable pitch technology is needed to realize the configuration of small pitch, low speed and large tension at low altitude, and large pitch, high speed and high efficiency at high altitude. This paper presents a method of aerodynamic profile optimization for propeller with multiple design points and a strategy of variable pitch angle under multiple operating conditions. The aerodynamic profile optimization model of propeller with multiple design points was established based on standard strip analysis, and the profile parameters of propeller were optimized, such as chord length and torsion angle distribution. A fast aerodynamic calculation model considering pitch angle variation is added to the model to realize the strategy of variable pitch angle under multiple working conditions. By comparing the aerodynamic performance of the propeller under fixed pitch and variable pitch, the results show that the efficiency of the propeller designed based on the aerodynamic shape optimization model of the propeller at multiple design points at high altitude is more than 80%, which is conducive to the long-term flight of the solar powered UAV. Considering the propeller with variable pitch optimization strategy, the maximum pulling force can be increased by 78.42% in take-off climbing condition, which can provide a larger climbing rate, which is conducive to the solar powered UAV quickly flying through the troposphere to reach the upper design point during take-off.

参考文献

1 CESTINO E. Design of solar high altitude long endurance aircraft for multi payload & operations[J]. Aerospace Science and Technology200610(6): 541-550.
2 张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报201637(S1): 1-7.
  ZHANG J, ZHANG D H. Analysis on the main points of overall design of solar unmanned aerial vehicle with high altitude and long endurance[J]. Acta Aeronautica et Astronautica Sinica201637(S1): 1-7 (in Chinese).
3 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报202041(3): 623418.
  MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica202041(3): 623418 (in Chinese).
4 ROSS H. Fly around the world with a solar powered airplane: AIAA-2008-8954[R]. Reston: AIAA, 2008.
5 杜绵银, 陈培, 李广佳, 等. 临近空间低速飞行器螺旋桨技术[J]. 飞航导弹2011(7): 15-19, 28.
  DU M Y, CHEN P, LI G J, et al. Propeller technology of near-space low-speed aircraft[J]. Aerodynamic Missile Journal2011(7): 15-19, 28 (in Chinese).
6 MORGADO J, ABDOLLAHZADEH M, SILVESTRE M A R, et al. High altitude propeller design and analysis[J]. Aerospace Science and Technology201545: 398-407.
7 CATANA R M, CICAN G. Global study of the performance of a propeller with a variable pitch and a variable diameter[J]. Applied Mechanics and Materials2016841: 298-302.
8 SHENG S Z, SUN C W. Control and optimization of a variable-pitch quadrotor with minimum power consumption[J]. Energies20169(4): 232.
9 李星辉, 李权, 张健. 太阳能无人机高效螺旋桨气动设计[J]. 航空工程进展202011(2): 220-225, 238.
  LI X H, LI Q, ZHANG J. Aerodynamic design of a high efficient solar powered UAV propeller[J]. Advances in Aeronautical Science and Engineering202011(2): 220-225, 238 (in Chinese).
10 XU J H, SONG W P, YANG X D, et al. Aerodynamic performance of variable-pitch propellers for high-altitude UAVs[J]. IOP Conference Series: Materials Science and Engineering2019686(1): 012019.
11 唐伟, 宋笔锋, 张玉刚, 等. 两个设计点的螺旋桨气动性能[J]. 航空动力学报201732(2): 354-363.
  TANG W, SONG B F, ZHANG Y G, et al. Aerodynamic performance of propeller with two design points[J]. Journal of Aerospace Power201732(2): 354-363 (in Chinese).
12 WALD Q R. The aerodynamics of propellers[J]. Progress in Aerospace Sciences200642(2): 85-128.
13 DRELA M. QPROP formulation[M]. Pasadena MIT Press, 2006: 1-14.
14 郭佳豪, 周洲, 范中允. 一种耦合CFD修正的螺旋桨快速设计方法[J]. 航空学报202041(2): 123216.
  GUOJIA H, ZHOU Z, FAN Z Y. A quick design method of propeller coupled with CFD correction[J]. Acta Aeronautica et Astronautica Sinica202041(2): 123216 (in Chinese).
15 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社, 2006: 55-89..
  LIU P Q. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006: 55-89. (in Chinese).
16 张健, 王江三, 耿延升, 等. 高空长航时太阳能无人机的技术挑战[J]. 航空科学技术202031(4): 14-20.
  ZHANG J, WANG J S, GENG Y S, et al. Technology challenges for high altitude long endurance solar powered UAV[J]. Aeronautical Science & Technology202031(4): 14-20 (in Chinese).
17 BARDINA J, HUANG P, COAKLEY T, et al. Turbulence modeling validation: AIAA-1997-2121[R]. Reston: AIAA, 1997.
18 MORGADO J, VIZINHO R, SILVESTRE M A R, et al. XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils[J]. Aerospace Science and Technology201652: 207-214.
19 MCGHEE R J, WALKER B, MILLARD B F. Experimental results for the Eppler 387 airfoil at low Reynolds numbers in the Langley low-turbulence pressure tunnel: NASA-TM-4062[R]. Washington, D. C.: NASA, 1988.
20 ANUSONTI-INTHRA P, LIOU W, BAUMANN A, et al. Virtual testing and simulation methods for aerodynamic performance of a heavy duty cooling fan[C]∥ SAE Technical Paper Series. Warrendale: SAE International, 2010.
21 WANG K L, ZHOU Z, FAN Z Y, et al. Aerodynamic design of tractor propeller for high-performance distributed electric propulsion aircraft[J]. Chinese Journal of Aeronautics202134(10): 20-35.
22 口启慧, 王海峰, 江泓鑫, 等. 考虑气动-结构的高空螺旋桨多学科优化方法[J/OL]. 航空动力学报, (2022-11-02)[2024-02-28]. .
  KOU Q H, WANG H F, JIANG H X, et al. Multidisciplinary optimization method for high-altitude propellers considering aero-structure[J/OL]. Journal of Aerospace Power, (2022-11-02)[2024-02-28]. (in Chinese).
23 XU H Q, GU S, FAN Y C, et al. A strategy learning framework for particle swarm optimization algorithm[J]. Information Sciences2023619: 126-152.
文章导航

/