高超声速双楔激波干扰定常射流控制试验研究
收稿日期: 2023-04-04
修回日期: 2023-04-24
录用日期: 2023-06-19
网络出版日期: 2023-06-21
基金资助
国家自然科学基金(92271110);国家科技重大专项(J2019-III-0010-0054);国家自然科学基金创新研究群体(T2221002);国防科技大学科研计划(ZK22-30)
Double wedge shock interaction control using steady jet in hypersonic flow: Experimental study
Received date: 2023-04-04
Revised date: 2023-04-24
Accepted date: 2023-06-19
Online published: 2023-06-21
Supported by
National Natural Science Foundation of China(92271110);National Science and Technology Major Project(J2019-III-0010-0054);National Natural Science Foundation Innovation Research Group(T2221002);Natural Science Program of National University of Defense Technology(ZK22-30)
激波干扰问题是超声速/高超声速飞行器中广泛存在的现象,且会带来压力载荷、热载荷剧增等严重问题。为了降低激波干扰区热载荷,开展了高超声速双楔流场第Ⅴ类、第Ⅳ类激波干扰气源/自持定常射流控制试验研究。双楔激波干扰气源定常射流控制降热机理体现在两方面:射流的隔绝作用以及激波干扰结构改变作用。在射流控制下,激波干扰区与壁面的干扰强度减弱,流场结构变化显著,不再是典型的第Ⅴ类、第Ⅳ类激波干扰结构,壁面热流也相应降低。射流压比越大,隔绝作用及结构改变作用越强,热流极值降低比例也越大,第Ⅴ类、第Ⅳ类激波干扰的热流极值最高分别降低约81.2%和79.6%。自持定常射流通过收集高速来流能量产生,在自持射流控制下,双楔第Ⅴ类、第Ⅳ类激波干扰区热流极值分别降低约20%和4.5%,提高自持射流压比是提升其激波干扰控制降热效果的关键。
谢玮 , 罗振兵 , 周岩 , 刘强 , 吴建军 , 董昊 . 高超声速双楔激波干扰定常射流控制试验研究[J]. 航空学报, 2024 , 45(7) : 128813 -128813 . DOI: 10.7527/S1000-6893.2023.28813
Shock interaction is a widespread phenomenon in supersonic/hypersonic vehicles, bringing serious problems such as pressure load and thermal load increase. To reduce the thermal load in the shock interaction zone, we conduct an experimental study on the control of Type-V and Type-Ⅳ double wedge shock interaction using air source/self-sustaining steady jet in hypersonic flow. The control and heat reduction mechanism of double wedge shock interaction by air source steady jet is embodied in two aspects: isolation effect of jet flow and structural change effect of shock interaction. Under the jet control, the interaction intensity between the shock interaction zone and the wall is weakened, and the structure of the flow field changes significantly, which is no longer the typical Type-V and Type-Ⅳ shock interaction, and the heat flux on the wall also decreases correspondingly. Larger jet pressure ratios lead to stronger isolation effect and structural change effect, as well as larger reduction ratios of heat flux extremum. The maximum reduction ratio of heat flux extremum of Type-V and Type-Ⅳ shock interaction is about 81.2% and 79.6%, respectively. Self-sustaining steady jet is generated by collecting high speed flow energy. Under the control of self-sustaining jet, the heat flux extremum of the double-wedge Type-V and Type-Ⅳ shock interaction zones decreases by about 20% and 4.5% respectively. Improving the pressure ratio of the self-sustaining jet is the key to improving the control and heat reduction effect of shock wave interaction.
Key words: shock interaction; double wedge; steady jet; active flow control; heat reduction
1 | 吴子牛, 白晨媛, 李娟, 等. 高超声速飞行器流动特征分析[J]. 航空学报, 2015, 36(1): 58-85. |
WU Z N, BAI C Y, LI J, et al. Analysis of flow characteristics for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 58-85 (in Chinese). | |
2 | BABINSKY H, HARVEY J. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011. |
3 | 罗振兵, 夏智勋, 王林. 高超声速飞行器内外流主动流动控制[M]. 北京: 科学出版社, 2019. |
LUO Z B, XIA Z X, WANG L. Active flow control of internal and external flow in hypersonic vehicle[M]. Beijing: Science Press, 2019 (in Chinese). | |
4 | 杨基明, 李祝飞, 朱雨建. 高超声速流动中的激波及相互作用[M]. 北京: 国防工业出版社, 2019. |
YANG J M, LI Z F, ZHU Y J. Shock waves and shock interactions in hypersonic flow[M]. Beijing: National Defense Industry Press, 2019 (in Chinese). | |
5 | 杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰[J]. 力学进展, 2016, 46(1): 541-587. |
YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46(1): 541-587 (in Chinese). | |
6 | 杨勇, 陈洪波. 高超声速再入飞行器IXV的研制与飞行试验[M]. 北京: 国防工业出版社, 2018. |
YANG Y, CHEN H B. Development and flight test of the intermediate experimental vehicle[M]. Beijing: National Defense Industry Press, 2018 (in Chinese). | |
7 | EGGERS T, DITTRICH R, VARVILL R. Numerical analysis of the SKYLON spaceplane in hypersonic flow: AIAA-2011-2298 [R]. Reston: AIAA, 2011. |
8 | EDNEY B E. Effects of shock impingement on the heat transfer around blunt bodies[J]. AIAA Journal, 1968, 6(1): 15-21. |
9 | OLEJNICZAK J, WRIGHT M J, CANDLER G V. Numerical study of inviscid shock interactions on double-wedge geometries[J]. Journal of Fluid Mechanics, 1997, 352: 1-25. |
10 | 袁军娅, 任翔, 蔡国飙, 等. 双锥/双楔流动中的高温气体效应仿真模拟[J]. 气体物理, 2022, 7(4): 10-18. |
YUAN J Y, REN X, CAI G B, et al. Simulation of high temperature gas effects in high enthalpy double cone/wedge flows[J]. Physics of Gases, 2022, 7(4): 10-18 (in Chinese). | |
11 | 檀姊静, 檀妹静, 付斌, 等. 高马赫数前缘激波-激波干扰[J]. 航空动力学报, 2023, 38(7): 1762-1772. |
TAN Z J, TAN M J, FU B, et al. Shock-shock interactions of high Mach leading edge[J]. Journal of Aerospace Power, 2023, 38(7): 1762-1772 (in Chinese). | |
12 | 姜宝森, 张亮, 李俊红, 等. 吸气式飞行器进气道唇口三维激波/激波干扰[J]. 航空动力学报, 2019, 34(4): 821-828. |
JIANG B S, ZHANG L, LI J H, et al. Three-dimensional shock/shock interaction of airbreathing vehicle’s inlet lip[J]. Journal of Aerospace Power, 2019, 34(4): 821-828 (in Chinese). | |
13 | XIANG G X, WANG C, TENG H H, et al. Shock/shock interactions between bodies and wings[J]. Chinese Journal of Aeronautics, 2018, 31(2): 255-261. |
14 | SWANTEK A, AUSTIN J. Heat transfer on a double wedge geometry in hypervelocity air and nitrogen flows[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
15 | KEYES J, HAINS F. Analytical and experimental studies of shock interference heating in hypersonic flows: NASA-TN-D-7139 [R]. Washington,D.C.: NASA Langley Research Center, 1973. |
16 | HOLDEN M, HARVEY J, WADHAMS T, et al. A review of experimental studies with the double cone and hollow cylinder/flare configurations in the LENS hypervelocity tunnels and comparisons with Navier-Stokes and DSMC computations[C]∥ Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
17 | KNISELY A M. Experimental investigation of nonequilibrium and separation scaling in double-wedge and double-cone geometries[D]. Urbana-Champaign: University of Illinois, 2016. |
18 | KNIGHT D, CHAZOT O, AUSTIN J, et al. Assessment of predictive capabilities for aerodynamic heating in hypersonic flow[J]. Progress in Aerospace Sciences, 2017, 90: 39-53. |
19 | 彭俊. 强激波相互作用及其极端热载荷诱发机制研究[D]. 北京: 中国科学院大学, 2021. |
PENG J. Study on strong shock wave interaction and its induced mechanism of extreme thermal load[D]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese). | |
20 | 熊文韬. 高温非平衡效应下双楔绕流中激波干扰研究[D]. 合肥: 中国科学技术大学, 2017. |
XIONG W T. On shock-shock interaction in double-wedge flow with high temperature non-equilibrium effects[D]. Hefei: University of Science and Technology of China, 2017 (in Chinese). | |
21 | LI J, ZHU Y J, LUO X S. On Type Ⅵ?Ⅴ transition in hypersonic double-wedge flows with thermo-chemical non-equilibrium effects[J]. Physics of Fluids, 2014, 26(8): 086104 |
22 | TONG F L, DUAN J Y, LI X L. Shock wave and turbulent boundary layer interaction in a double compression ramp[J]. Computers & Fluids, 2021, 229: 105087. |
23 | 田正雨, 李桦, 范晓樯. 六类高超声速激波-激波干扰的数值模拟研究[J]. 空气动力学学报, 2004, 22(3): 361-364. |
TIAN Z Y, LI H, FAN X Q. Numerical investigation for six types of hypersonic turbulent shock-shock interaction[J]. Acta Aerodynamica Sinica, 2004, 22(3): 361-364 (in Chinese). | |
24 | GAITONDE D V, ADLER M C. Dynamics of three-dimensional shock-wave/boundary-layer interactions[J]. Annual Review of Fluid Mechanics, 2023, 55: 291-321. |
25 | YANG H S, ZONG H H, LIANG H A, et al. Swept shock wave/boundary layer interaction control based on surface arc plasma[J]. Physics of Fluids, 2022, 34(8): 087119 |
26 | 时晓天, 吕蒙, 赵渊, 等. 激波/湍流边界层干扰的流动控制技术综述[J]. 航空学报, 2022, 43(1): 625929. |
SHI X T, LYU M, ZHAO Y, et al. Flow control technique for shock wave/turbulent boundary layer interactions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625929 (in Chinese). | |
27 | 范孝华, 唐志共, 王刚, 等. 激波/湍流边界层干扰低频非定常性研究评述[J]. 航空学报, 2022, 43(1): 625917. |
FAN X H, TANG Z G, WANG G, et al. Review of low-frequency unsteadiness in shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 625917 (in Chinese). | |
28 | ALBERTSON C, VENKAT V. Shock interaction control for scramjet cowl leading edges: AIAA-23681-2199[R]. Reston: AIAA, 2005. |
29 | 吴文堂, 洪延姬, 王殿恺, 等. 激光能量注入控制Ⅳ型激波干扰的数值研究[J]. 强激光与粒子束, 2014, 26(2): 50-55. |
WU W T, HONG Y J, WANG D K, et al. Numerical investigation of type Ⅳ shock interaction controlled by laser energy deposition[J]. High Power Laser and Particle Beams, 2014, 26(2): 50-55 (in Chinese). | |
30 | 王殿恺, 洪延姬, 任玉新, 等. 高重频激光控制Ⅳ型激波干扰方法研究[J]. 推进技术, 2015, 36(10): 1459-1464. |
WANG D K, HONG Y J, REN Y X, et al. Flow control method of type Ⅳ interaction with high rated laser energy[J]. Journal of Propulsion Technology, 2015, 36(10): 1459-1464 (in Chinese). | |
31 | XIE W, LUO Z B, ZHOU Y, et al. Experimental study on shock wave control in high-enthalpy hypersonic flow by using SparkJet actuator[J]. Acta Astronautica, 2021, 188: 416-425. |
32 | TANG M X, WU Y, WANG H Y. Experimental investigation on hypersonic shock-shock interaction control using plasma actuator array[J]. Acta Astronautica, 2022, 198: 577-586. |
33 | KONG Y K, LI J, WU Y, et al. Experimental study on shock-shock interaction over doublewedge controlled by surface arc plasma array[J]. Contributions to Plasma Physics, 2022, 62(9): e202200062 |
34 | 张传标, 梁华, 郭善广, 等. 高能电弧等离子体激励控制双压缩拐角激波/边界层干扰实验研究[J]. 推进技术, 2022, 43(10): 213-228. |
ZHANG C B, LIANG H, GUO S G, et al. Experimental study on double compression ramp shock wave/boundary layer interaction controlled by high-energy streamwise pulsed arc discharge array[J]. Journal of Propulsion Technology, 2022, 43(10): 213-228 (in Chinese). |
/
〈 |
|
〉 |