综述

水陆两栖飞机着水试验与理论分析方法研究进展

  • 张永杰 ,
  • 崔博 ,
  • 王明振 ,
  • 张楚哲 ,
  • 罗琳胤 ,
  • 陈向明 ,
  • 刘小川
展开
  • 1.西北工业大学 民航学院,西安  710072
    2.中国特种飞行器研究所,荆门  448035
    3.中航通飞华南飞机工业有限公司,珠海  519040
    4.中国飞机强度研究所,西安  710065

收稿日期: 2023-03-08

  修回日期: 2023-05-06

  录用日期: 2023-06-19

  网络出版日期: 2023-06-21

基金资助

国家自然科学基金(11972301)

Research progress of amphibious aircraft water landing test and theoretical analysis methods

  • Yongjie ZHANG ,
  • Bo CUI ,
  • Mingzhen WANG ,
  • Chuzhe ZHANG ,
  • Linyin LUO ,
  • Xiangming CHEN ,
  • Xiaochuan LIU
Expand
  • 1.School of Civil Aviation,Northwestern Polytechnical University,Xi’an  710072,China
    2.China Special Vehicle Research Institute,Jingmen  448035,China
    3.China Aviation General Aircraft Institute Co. Ltd,Zhuhai  519040,China
    4.Aircraft Strength Research Institute of China,Xi’an  710065,China

Received date: 2023-03-08

  Revised date: 2023-05-06

  Accepted date: 2023-06-19

  Online published: 2023-06-21

Supported by

National Natural Science Foundation of China(11972301)

摘要

水陆两栖飞机是可以执行例如地面监视、海上救援、森林消防等多种复杂任务的多功能飞机。复杂的任务环境需要水陆两栖飞机具有良好的着水性能以应对水面起降及水上滑行需求。因此,用以改进水陆两栖飞机设计的着水试验与分析方法被认为是保障飞机正常水上工作和预防灾难性结构故障的重中之重。本文对水陆两栖飞机的着水试验与相关分析方法进行了系统的文献综述。首先,介绍了水陆两栖飞机及其船身式下机身与浮筒等着水结构的发展历程及发展趋势。其次,重点对水陆两栖飞机材料级、组件级、结构级和全机着水试验以及着水载荷模拟试验进行介绍。随后,对水陆两栖飞机相关理论分析方法以及主要流行的仿真分析方法进行了介绍。然后,对其他飞行器着水试验与相关理论和数值分析方法进行综述。最后,对水陆两栖飞机着水试验与分析方法的发展现状进行总结,并探讨水陆两栖飞机着水试验与分析方法的技术挑战及未来可能的发展方向。

本文引用格式

张永杰 , 崔博 , 王明振 , 张楚哲 , 罗琳胤 , 陈向明 , 刘小川 . 水陆两栖飞机着水试验与理论分析方法研究进展[J]. 航空学报, 2023 , 44(21) : 528665 -528665 . DOI: 10.7527/S1000-6893.2023.28665

Abstract

Amphibious aircraft are multifunctional aircraft that can perform a variety of complex tasks such as ground surveillance, maritime rescue, and forest firefighting. Complex mission environment requires the amphibious aircraft to possess excellent water landing performance to cope with the demands of water takeoff, landing, and water taxiing. Therefore, water landing test and analysis methods to improve the design of amphibious aircraft are considered crucial to ensure the normal water operation and prevent catastrophic structural failures. This paper presents a systematic literature review of water landing test and related analysis methods for amphibious aircraft. Firstly, the development history and development trend of water landing structures such as amphibious aircraft, its hull-type lower fuselage and floats are introduced. Secondly, the material-level, component-level, structural-level and full-aircraft water landing tests as well as water load simulation tests for amphibious aircraft are introduced. Then, the theoretical analysis methods related to amphibious aircraft and the widely used simulation analysis methods are introduced. The water landing tests and related theoretical and numerical analysis methods for other aircraft are also reviewed. Finally, the development status of the water landing test and analysis methods for amphibious aircraft is summarized, and the technical challenges and possible future development directions of the water landing tests and analysis methods for amphibious aircraft are discussed.

参考文献

1 BLOCKLEY R, SHYY W. Encyclopedia of aerospace engineering[M]. Chichester: Wiley, 2010.
2 BROWN D R. Is there a role for modern day seaplanes in open ocean search and rescue?[D]. Fort Leavenworth: U.S. Command and General Staff College, 1997: 1-65.
3 HORIUCHI Y. Sudden decline of flying-boat commercial airlines in 1950s: Its cause and implications for revival[J]. Journal of Literature and Art Studies20144(7): 588-598.
4 LEVIS E. Design synthesis of advanced technology, flying wing seaplanes[D]. London: Imperial College London, 2011: 2-5.
5 WAGNER W, STRATER B, MAJKA A. Report on requirements for new seaplane transport system as integrated part of future sea/land/air transportation system: FUSETRA-D5[R]. Brussels: European Commission, 2011.
6 DE VERGERON K L. India and the EU: What opportunities for defence cooperation? [EB/OL]. (2015-07-09)[2023-03-08]. .
7 LUBIS A, SURYA B A. Feasibility analysis of n219 aircraft routing in timika[J]. Journal of Business and Management20143(2): 255-66.
8 MAJKA A, WAGNER W, STR?TER B. Requirements for a future seaplane/amphibian transport system: FUSETRA_D51[R]. Brussels: European Commission, 2011.
9 KREIN A, WILLIAMS G. Flightpath 2050: Europe’s vision for aeronautics[C]∥ KNORZER D, SZODRUCH J. Innovation for Sustainable Aviation in a Global Environment: Proceedings of the Sixth European Aeronautics Days. Madrid: IOS Press, 2012, 30.
10 YANG X B, WANG T M, LIANG J H, et al. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)[J]. Progress in Aerospace Sciences201574: 131-151.
11 SENDNER F M. An energy-autonomous UAV swarm concept to support sea-rescue and maritime patrol missions in the Mediterranean sea[J]. Aircraft Engineering and Aerospace Technology202294(1): 112-123.
12 GUDMUNDSSON S. General aviation aircraft design: Applied methods and procedures[M].Oxford: Butterworth-Heinemann, 2014.
13 LIEM R P. Review of design aspects and challenges of efficient and quiet amphibious aircraft[J]. Journal of Physics: Conference Series20181005: 012027.
14 肖琴, 罗帆. 两栖水上飞机起降安全风险传播机制[J]. 交通信息与安全202240(1): 1-9.
  XIAO Q, LUO F. Propagation mechanism of safety risk during take-off and landing of amphibious seaplanes based on D-SEIRS model[J]. Journal of Transport Information and Safety202240(1): 1-9 (in Chinese).
15 黄领才, 雍明培. 水陆两栖飞机的关键技术和产业应用前景[J]. 航空学报201940(1): 522708.
  HUANG L C, YONG M P. Key technologies and industrial application prospects of amphibian aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522708 (in Chinese).
16 MACDONALD C, BROOKS C, MCGOWAN R. Survival from Canadian seaplane water accidents: 1995 to 2019[J]. Aerospace Medicine and Human Performance202192(10): 798-805.
17 CAMPBELL J C, VIGNJEVIC R. Simulating structural response to water impact[J]. International Journal of Impact Engineering201249: 1-10.
18 TOSO N. Contribution to the modelling and simulation of aircraft structures impacting on water[D]. Stuttgart: Universit?t Stuttgart, 2009.
19 XIAO Q, LUO F, LI Y P. Risk assessment of seaplane operation safety using Bayesian network[J]. Symmetry202012(6): 888.
20 中国民用航空局. 运输类飞机适航标准: CCAR-25 [S]. 北京:中国民用航空局, 2016.
  Civil Aviation Administration of China. Airworthiness standards of transport category aircraft: CCAR-25 [S]. Beijing:Civil Aviation Administration of China, 2016 (in Chinese).
21 刘永军. 运-12双浮筒式水上飞机改型设计[D]. 南京: 南京航空航天大学, 2008.
  LIU Y J. Modification design of Y-12 double float seaplane[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese).
22 BAHULEKAR S S. Effect of spray rails on takeoff performance of amphibian aircraft[D]. Daytona Beach: Embry-Riddle Aeronautical University, 2022.
23 CANAMAR LEYVA A L. Seaplane conceptual design and sizing[D]. Glasgow: University of Glasgow, 2012.
24 LAWRENCE B L. The American institute of aeronautics and astronautics library[J]. Science & Technology Liraries19877(2): 7-14.
25 LANGLEY M. Seaplane float and hull design[J]. The Aeronautical Journal193539(298): 995-996.
26 《飞机设计手册》总编委会. 飞机设计手册第4册:军用飞机总体设计[M]. 北京:航空工业出版社, 2005: 940-1016.
  Editorial Board of Aireraft Design Manual. Aircraft design manual Part4: Overall design of military aireraft[M]. Beijing: Aviation Industry Press, 2005: 940-1016 (in Chinese).
27 飞机设计员手册编辑委员会. 飞机设计员手册[M]. 北京:国防工业出版社, 1965.
  Aircraft Designer’s Handbook Editorial Board. Aircraft designer’s manual[M]. Beijing: National Defense Industry Press, 1965.
28 DAWSON J R, WADLIN K L. Preliminary tank tests of naca hydro-skis for high-speed airplanes: L7104[R]. Washington D. C.: NACA, 1947.
29 高霄鹏, 孙培成, 董祖舜, 等. 支柱式沉浸水橇降载性能相关影响因素[J]. 北京航空航天大学学报201642(2): 236-242.
  GAO X P, SUN P C, DONG Z S, et al. Influence of hydro-ski load reducing performance corresponding on some parameters[J]. Journal of Beijing University of Aeronautics and Astronautics201642(2): 236-242 (in Chinese).
30 NICOLAOU S. Flying boats & seaplanes: A history from 1905[M]. Bideford: Bay View Books, 1998.
31 SAZAK E. Parametric investigation of hull shaped fuselage for amphibious UAV[D]. Ankara: Middle East Technical University, 2017.
32 HARPER H J C. The development of the float seaplane[J]. Royal United Services Institution Journal193883(531): 552-561.
33 EDMONDS C H K. Naval uses for seaplanes and flying boats[J]. Royal United Services Institution Journal192873(491): 513-517.
34 STINTON D. Aero-marine design and flying qualities of floatplanes and flying-boats[J]. The Aeronautical Journal198791(903): 97-127.
35 SMIT P B, HOUGHTON I A, JORDANOVA K, et al. Assimilation of significant wave height from distributed ocean wave sensors[J]. Ocean Modelling2021159: 101738.
36 LONG B. The navy seadart supersonic seaplane: AIAA-1993-3941[R]. Reston: AIAA, 1993.
37 VITALY Z, ALEXANDR M. Development trends of amphibian’s shape[C]∥ 29th Congress of the International Council of the Aeronautical Sciences (ICAS). St. Petersburg: ICAS. 2014: 0910.
38 ODEDRA J, HOPE G, KENNELL C. Use of seaplanes and integration within a sea base: ADA476447[R]. West Bethesda: Naval Surface Warfare Center, 2004.
39 STEINER M F. Ditching tests with a 1/11-size model of the Army B-25 airplane in NACA tank number 2 and on an outdoor catapult: N-62-65619[R]. Washington, D.C.: NACA, 1944.
40 THOMPSON W. Ditching investigation of a 1/30-scale dynamic model of a heavy jet transport airplane: NASA-TM-X-2445[R]. Washington, D.C.: NASA, 1972.
41 GRETSCH J, HENRY M, JIVANI M, et al. A virtual aerospace crashworthiness modeling platform: Part I, substantiation water ditching trials: AIAA-2012-0687[R]. Reston: AIAA, 2012.
42 HU W, WANG Y H, CHEN C H. Numerical simulation of aircraft ditching based on ALE method[J]. Applied Mechanics and Materials2014668-669: 490-493.
43 THOMPSON W C. Ditching Investigation of a dynamic model of a HU2K-1 helicopter: N-AM-42 [R], Washington, D.C.: NACA, 1961.
44 PENTEC?TE N, VIGLIOTTI A. Simulation of the impact on water ofa subfloor component and a full-scale WG30 helicopter[C]∥AHS International 58th Annual Forum. K?ln: DLR, 2002.
45 THO C, SPARKS C, SAREEN A. Hard surface and water impact simulations of two helicopter subfloor concepts[C]∥ American Helicopter Society International. proceedings of the Proceedings of the 60th Annual Forum of the American Helicopter Society. Baltimore: Curran Associates Inc., 2004: 1474-1490.
46 HUGHES K, CAMPBELL J. Helicopter crashworthiness: A chronological review of research related to water impact from 1982 to 2006[J]. Journal of the American Helicopter Society200853(4): 429.
47 YANG X F, MA J X, WEN D S, et al. Crashworthy design and energy absorption mechanisms for helicopter structures: A systematic literature review[J]. Progress in Aerospace Sciences2020114: 100618.
48 BUYUKOZTURK O, HIBBITT H, SORENSEN E P. Water impact analysis of space shuttle solid rocket motor by the finite element method: NASA-CR-120319[R]. Washington, D.C.: NASA, 1974.
49 MITCHELL K N, MAHADEVAN S. SRB splashdown analysis and structural damage risk assessment[C]∥ Engineering, Construction, and Operations in Challenging Environments. Reston: American Society of Civil Engineers, 2004: 461-8.
50 BROWN W K, ROTHSTEIN J D, FOSTER P. Human response to predicted Apollo landing impacts in selected body orientations[J]. Aerospace Medicine196637(4): 394-8.
51 ROSENBAUM J D, JENSEN W R. Water impact of the mercury capsule: Correlation of analysis with NASA tests[J]. AIAA Journal19631(5): 1190-1191.
52 BROOKS J R, ANDERSON L A. Dynamics of a space module impacting water[J]. Journal of Spacecraft and Rockets199431(3): 509-515.
53 LORENZ R D. Splashdown and post-impact dynamics of the Huygens probe: model studies[C]∥Proceedings of the Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. Lisbon: ESA Publications Division, 2004: 117-123.
54 BATTERSON S A. The NACA Impact basin and water landing tests of a float model at various velocities and weights: ACR-No.L4H15[R]. Washington, D.C.: NACA, 1946.
55 MILWITZKY B. Generalized theory for seaplane impact: NACA-TR-1103[R]. Washington, D.C.: NACA, 1952.
56 NWCG Committee Correspondence. Water scooping aircraft operations: NIAC-M-21-06A[R]. Boise: National Wildfire Coordinating Group (NWCG), 2021.
57 CHOWDHURY A, PARANJAPE P, PALANKAR A. Design and development of an amphibious ethereal firefighting aircraft capable to carry both water and fire stifling fluid synthetic compounds[J]. International Journal of Innovative Science and Research Technology20227(9): 509-547.
58 AHMAD MALIK T H, BAIG K, AHMAD BAQAI K, et al. Review on advance seaplane conceptual design adapting trimaran boat hull concept[C]∥ 2021 Seventh International Conference on Aerospace Science and Engineering (ICASE). Piscataway: IEEE Press, 2022: 1-5.
59 CANAMAR A, SMRCEK L. Visionary concept: Advance amphibious preliminary design[J]. International Journal of Engineering Research and Development20123(6): 1-12.
60 JUSTICE R, HAYS A, PARROTT E. The future of very large subsonic transports[J]. Transportation Beyond 2000: Technologies Needed for Engineering Design1996.
61 VARYUKHIN A, OVDIENKO M, VLASOV A, et al. Unmanned fire-fighting amphibious aircraft with distributed turboelectric propulsion system[C]∥ 32nd Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2021: 0451.
62 SIDDALL R, KOVA? M. Launching the AquaMAV: Bioinspired design for aerial-aquatic robotic platforms[J]. Bioinspiration & Biomimetics20149(3): 031001.
63 ZINK G. Computational studies on the effect of water impact on an unmanned air vehicle[D]. Iowa State University, Master of Science2008. doi:10.31274/rtd-180813-16429
64 ESWARAN P, TAMILMANI B, RARITY KARNA D, et al. Triphibian - an urban future transportation system[J]. IOP Conference Series: Materials Science and Engineering2020764(1): 012035.
65 HUGHES K, VIGNJEVIC R, CAMPBELL J, et al. From aerospace to offshore: Bridging the numerical simulation gaps-Simulation advancements for fluid structure interaction problems[J]. International Journal of Impact Engineering201361: 48-63.
66 RECHARD E, JAMES C, ALAN D, et al. Aircraft crash survival design guide Volume Ⅲ: USAAVSCOM TR 89-D-22C[R]. Phoenix: Simula Inc., 1989.
67 HUGHES K, VIGNJEVIC R, CAMPBELL J. Experimental observations of an 8 m/s drop test of a metallic helicopter underfloor structure onto a hard surface: Part 1[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2007221: 661-678.
68 HUGHES K, VIGNJEVIC R, CAMPBELL J. Experimental observations of an 8 m/s drop test of a metallic helicopter underfloor structure onto water: Part 2[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2007221: 679-690.
69 HUGHES K. Application of improved Lagrangian techniques for helicopter crashworthiness on water[D]. Cranfield: Cranfield University, 2005: 118-119.
70 ROUSE M, JEGLEY D, MCGOWAN D, et al. Utilization of the building-block approach in structural mechanics research: AIAA-2005-1874[R].Reston: AIAA, 2005.
71 BATTLEY M, STENIUS I, BREDER J, et al. Dynamic characterisation of marine sandwich structures[M]∥THOMSEN O T, BOZHEVOLNAYA E, LYCKEGAARD A, editors. Sandwich Structures 7: Advancing with Sandwich Structures and Materials. Berlin: Springer, 2005: 537-546.
72 HUERA-HUARTE F J, JEON D, GHARIB M. Experimental investigation of water slamming loads on panels[J]. Ocean Engineering201138(11-12): 1347-1355.
73 BATTLEY M, ALLEN T. Servo-hydraulic system for controlled velocity water impact of marine sandwich panels[J]. Experimental Mechanics201252(1): 95-106.
74 HASSOON O H, TARFAOUI M, MALKI ALAOUI A EL. An experimental investigation on dynamic response of composite panels subjected to hydroelastic impact loading at constant velocities[J]. Engineering Structures2017153: 180-190.
75 HASSOON O H, TARFAOUI M, MALKI ALAOUI A EL, et al. Experimental and numerical investigation on the dynamic response of sandwich composite panels under hydrodynamic slamming loads[J]. Composite Structures2017178: 297-307.
76 HASSOON O H, TARFAOUI M, MOUMEN A EL, et al. Mechanical performance evaluation of sandwich panels exposed to slamming impacts: Comparison between experimental and SPH results[J]. Composite Structures2019220: 776-783.
77 XIE H, REN H L, QU S, et al. Numerical and experimental study on hydroelasticity in water-entry problem of a composite ship-hull structure[J]. Composite Structures2018201: 942-957.
78 LIN M C, SHIEH L D. Simultaneous measurements of water impact on a two-dimensional body[J]. Fluid Dynamics Research199719(3): 125-148.
79 YETTOU E M, DESROCHERS A, CHAMPOUX Y. Experimental study on the water impact of a symmetrical wedge[J]. Fluid Dynamics Research200638(1): 47-66.
80 PANCIROLI R, SHAMS A, PORFIRI M. Experiments on the water entry of curved wedges: High speed imaging and particle image velocimetry[J]. Ocean Engineering201594: 213-222.
81 ANGHILERI M, CASTELLETTI L M L, FRANCES CONI E, et al. Rigid body water impact-experimental tests and numerical simulations using the SPH method[J]. International Journal of Impact Engineering201138(4): 141-151.
82 褚林塘, 孙丰, 廉滋鼎, 等. 水陆两栖飞机船体着水载荷数值与试验分析[J]. 振动与冲击201635(15): 211-215.
  CHU L T, SUN F, LIAN Z D, et al. Numerical simulation and tests for water load of amphibious aircraft hulls[J]. Journal of Vibration and Shock201635(15): 211-215 (in Chinese).
83 唐彬彬, 吴彬, 王明振, 等. 水陆两栖飞机变鳍式浮筒安装高度的水动性能[J]. 科学技术与工程201818(36): 132-135.
  TANG B B, WU B, WANG M Z, et al. Hydrodynamic performance of amphibious aircraft of different installation height of sponson[J]. Science Technology and Engineering201818(36): 132-135 (in Chinese).
84 FISHER L J. Model ditching investigations of three airplanes equipped with hydro-skis: NACA-RM-L9K23[R]. Washington D.C.: NACA, 1950.
85 高霄鹏, 孙培成, 董祖舜, 等. 水橇参数对水橇降载性能的影响研究[J]. 船舶力学201721(10): 1235-1243.
  GAO X P, SUN P C, DONG Z S, et al. Study on the influence of hydro-ski load reducing performance of hydro-ski parameters[J]. Journal of Ship Mechanics201721(10): 1235-1243 (in Chinese).
86 王明振, 吴彬, 李新颖, 等. 水陆两栖飞机平静水面着水冲击载荷影响因素分析[J]. 科学技术与工程201616(12): 298-302.
  WANG M Z, WU B, LI X Y, et al. An experimental study about impact load of the amphibious aircraft landing on the calm water[J]. Science Technology and Engineering201616(12): 298-302 (in Chinese).
87 黄淼, 褚林塘, 李成华, 等. 大型水陆两栖飞机抗浪能力研究[J]. 航空学报201940(1): 522335.
  HUANG M, CHU L T, LI C H, et al. Seakeeping performance research of large amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522335 (in Chinese).
88 焦俊, 张家旭, 王明振, 等. 水陆两栖飞机自由飞模型着水冲击试验技术研究[C]∥ 中国航空学会. 2015年第二届中国航空科学技术大会论文集.北京: 国防工业出版社, 2015: 5.
  JIAO J, ZHANG J X, WANG M Z, et al. Study on water entry test techniques with amphibian free flight model [C]∥ Chinese Society of Aeronautics and Astronautics. Proceedings of the 2nd China Aviation Science and Technology Conference 2015. Beijing: National Defense Industry Press, 2015: 5 (in Chinese).
89 GUO Y, MA D L, YANG M Q, et al. Numerical investigation on the resistance characteristics of a flying boat planing in calm water[J]. Applied Ocean Research2021117: 102929.
90 PENNY R E. Seaplane development[J]. The Journal of the Royal Aeronautical Society192731(201): 844-885.
91 CHICKEN S H. Conceptual design methodologies for waterborne and amphibious aircraft[D]. Cranfield: Cranfield University, 1999.
92 HANDLER E H. Tilt and vertical float aircraft for open ocean operations[J]. Journal of Aircraft19663(6): 481-489.
93 ALLEN T. Mechanics of flexible composite hull panels subjected to water impacts[D]. Auckland: The University of Auckland, 2013: 9-283.
94 CHUANG S L. Experiments on flat-bottom slamming[J]. Journal of Ship Research196610(1): 10-17.
95 RICHARDS M K, KELLEY E A. Development of a water impact dynamic test facility and crash testing of a UH-1H aircraft onto a water surface[C]∥ American Helicopter Society 55th Annual Forum. Quebec: American Helicopter Society, 1999: 293528151.
96 ANGHILERI M, CASTELLETTI L M L, FRANCESCONI E, et al. Survey of numerical approaches to analyse the behavior of a composite skin panel during a water impact[J]. International Journal of Impact Engineering201463: 43-51.
97 THUIS H, WIGGENRAAD J F M. A tensor-skin concept for crashworthiness of helicopters in case of water impact[C]∥ 50th Annual Forum Proceedings-American Helicopter Society. Washingdon D.C.: American Helicopter Society, 1994: 547.
98 WATANABE S. Resistance of impact on water surface, part I—cone[J]. Institute of Physical and Chemical Research193012: 251-67.
99 WATANABE S. Resistance of impact on water surface, part II—cone (continued)[J]. Institute of Physical and Chemical Research193014: 153-68.
100 CHUANG S L. Experiments on slamming of wedge-shaped bodies[J]. Journal of Ship Research196711(3): 190-198.
101 ZHAO R, FALTINSEN O, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]∥ Proceedings of the 21st Symposium on Naval Hydrodynamics. Washington D.C.: National Academies Press, 1996: 408-423.
102 AARSNES J. Drop test with ship sections-effect of roll angle: 603834.00.01[R]. Trondheim: Norwegian Marine Technology Research Institute, 1996.
103 孙辉, 卢炽华, 何友声. 二维楔形体冲击入水时的流固耦合响应的实验研究[J]. 水动力学研究与进展200318(1): 104-109.
  SUN H, LU C H, HE Y S. Experimental research on the fluid-structure interaction in water entry of 2D elastic wedge[J]. Journal of Hydrodynamics200318(1): 104-109 (in Chinese).
104 莫立新, 王辉, 蒋彩霞, 等. 变刚度楔形体板架落体砰击试验研究[J]. 船舶力学201115(4): 394-401.
  MO L X, WANG H, JIANG C X, et al. Study on dropping test of wedge grillages with various types of stiffeness[J]. Journal of Ship Mechanics201115(4): 394-401 (in Chinese).
105 DONG C R, SUN S L, SONG H X, et al. Numerical and experimental study on the impact between a free falling wedge and water[J]. International Journal of Naval Architecture and Ocean Engineering201911(1): 233-243.
106 Giavotto V, Caprile C, Airoldi A, et al. Research activity at politecnico di milano crash test laboratory[C]∥ Third International Krash Users’ seminar. Milano: Politecnico di Milano, 2001:1-12.
107 FRANCESCONI E E, ANGHILERI M. A numerical-experimental investigations on crash behaviour of skin panels during a water impact comparing ale and sph approaches[C]∥ 7th European LS-DYNA Conference. Baden-Baden: ANSYS Inc., 2009: H-I-04.
108 FRANCESCONI E, ANGHILERI M. Water impact drop tests of metallic and composite skin panels and numerical simulations using ale and sph approaches[C]∥ 65th Annual Forum Proceedings-American Helicopter Society. Curran: American Helicopter Society, 2009: 944-953.
109 MITCHELL R. Tank tests with seaplane models: Suggestions, based on experience, for the application of model results to full scale[J]. Aircraft Engineering and Aerospace Technology19302(10): 255-259.
110 TRUSCOTT S. The NACA tank: a high-speed towing basin for testing models of seaplane floats: NACA-TR-470[R]. Washington, D.C.: NACA, 1934
111 BATTERSON S A. Water landing investigation of a hydro-ski model at beam loadings of 18.9 and 4.4: NACA-RM-L51F27[R]. Washington D.C.: NACA, 1951.
112 FISHER L J, HOFFMAN E. A brief hydrodynamic investigation of a navy seaplane design equipped with a hydro-ski: NACA-RM-L53F04[R]. Washington, D.C.: NACA, 1953.
113 LU Y J, DEL BUONO A, XIAO T H, et al. On applicability of von Karman’s momentum theory in predicting the water entry load of V-shaped structures with varying initial velocity[J]. Ocean Engineering2022262: 112249.
114 COOMBES L P, PERRING W G A. The farnborough seaplane tank[J]. Aircraft Engineering and Aerospace Technology19346(3): 63-66.
115 BERTRAM V. Practical ship hydrodynamics[M]. 2nd ed. Amsterdam: Elsevier, 2011: 1-333.
116 PARKINSON J. NACA model investigations of seaplanes in waves: NACA-TN-3419[R]. Washington, D.C.: NACA, 1955.
117 MILWITZKY B. A generalized theoretical and experimental investigation of the motions and hydrodynamic loads experienced by V-bottom seaplanes during step-landing impacts: NACA-TN-1516[R]. Washington, D.C.: NACA, 1948.
118 WEINIG F. Impact of a vee-type seaplane on water with reference to elasticity: No.810[R]. Washington D.C.: NACA, 1936.
119 THOMPSON F. Water pressure distribution on a twin-float seaplane: N-62-50328[R]. Washington D.C.: NAVY Building, 1930.
120 ITO K, SENDA Y, ITOH E, et al. 2D3 国産水上飛行機開発プロジェクト[C]∥ Program of 42nd Aircraft Symposium. 神奈川: 日本航空宇宙学会, 2004: 262262838.
  ITO K, SENDA Y, ITOH E, et al. The development of a new japanese seaplane[C]∥ Program of 42nd Aircraft Symposium. Kanagawa: The Japan Society for Aeronautical and Space Sciences, 2004: 262262838 (in Japanese).
121 李卢丹, 蒋红娜, 姜宏伟. 大型水陆两栖飞机入水压力测试技术研究[J]. 电子测量与仪器学报202236(7): 206-212.
  LI L D, JIANG H N, JIANG H W. Research on water entry pressure measurementtechnology of large amphibious aircraft[J]. Journal of Electronic Measurement and Instrumentation202236(7): 206-212 (in Chinese).
122 吕继航, 杨荣. 一种用于弹性水载荷测试的水上飞机机身模型: CN218463899U[P]. 2022-09-02.
  LV J H, YANG R. A seaplane fuselage model for elastic water load testing: CN218463899U[P]. 2022-09-02 (in Chinese).
123 REMINGTON W. The Canadair CL-215 amphibious aircraft-Development and applications: AIAA-1989-1541[R]. Reston: AIAA, 1989.
124 COOMBES L P. The testing of seaplanes and flying boats[J]. The Journal of the Royal Aeronautical Society193034: 190-209.
125 HAMILTON J, ALLEN J E. Seaplane research—the MAEE contribution[J]. The Aeronautical Journal2003107(1069): 125-148.
126 吴彬, 王明振, 杨阳, 等. 水陆两栖飞机着水载荷试验研究[C]∥ 第十七届中国国际船艇展暨高性能船学术报告会. 上海:中国造船工程学会, 2012: C10-1-C10-5.
  WU B, WANG M Z, YANG Y, et al. Amphibious aircraft landing load test study[C]∥ The 17th China International Boat Show and High Performance Boat Academic Conference. Shanghai: The Chinese Society of Naval Architects and Marine Engineers, 2012: C10-1-C10-5 (in Chinese).
127 陈枫. 两栖飞机船体机身水气动设计及着水载荷减缓技术研究[D]. 南京: 南京航空航天大学, 2019.
  CHEN F. Hydroaerodynamic design of amphibious aircraft hull and fuselage and research on landing load mitigation technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
128 张培红, 周乃春, 邓有奇, 等. 雷诺数对飞机气动特性的影响研究[J]. 空气动力学学报201230(6): 693-698.
  ZHANG P H, ZHOU N C, DENG Y Q, et al. The effects of Reynolds number on airplane aerodynamic characteristics[J]. Acta Aerodynamica Sinica201230(6): 693-698 (in Chinese).
129 THUIS H, VRIES H D, WIGGENRAAD J. Sub-floor skin panels for improved crashworthiness of helicopters in case of water impact[C]∥ 51th Annual Forum Proceedings-American Helicopter Society. Fort Worth: American Helicopter Society, 1995: 600-608.
130 SEDDON C M, MOATAMEDI M. Review of water entry with applications to aerospace structures[J]. International Journal of Impact Engineering200632(7): 1045-1067.
131 MICHIELSEN A, WIGGENRAAD J, UBELS L C, et al. Design, test and analysis of tensor skin panels for improved crashworthiness in case of water impact[J]. 1998.
132 王明振, 吕宏强, 曹楷, 等. 一种水陆两栖飞机典型截面的着水面载荷预测方法: CN114357878A[P]. 2022-04-15.
  WANG M Z, LV H Q, CAO K, et al. A method for predicting landing surface loads on typical sections of amphibious aircraft: CN114357878A[P]. 2022-04-15 (in Chinese).
133 胡亮文, 曾毅. 水陆两栖飞机着水静力试验载荷计算方法: CN110750890A[P]. 2020-02-04.
  HU L W, ZENG Y. Amphibious aircraft landing hydrostatic test load calculation method: CN110750890A[P]. 2020-02-04 (in Chinese).
134 田文朋,夏峰,宋鹏飞,等,水陆两栖飞机静力试验优化机翼变形的载荷配平 [J],航空学报202041(11): 223956.
  TIAN W P, XIA F, SONG P F, et al. Load balancing for wind deformaton optimization in amphibious aircraft statictest[J]. Acta Aeronautica et Astronautica Sinica202041(11): 223956 (in Chinese).
135 张柁, 张园, 杨兆林, 等. 基于结构变形约束的水陆两栖飞机水载荷静力试验载荷优化配平技术[J]. 机床与液压202048(11): 86-91.
  ZHANG T, ZHANG Y, YANG Z L, et al. Load optimization and balancing technology for static test of water load amphibious aircraft based on structural deformation constraint[J]. Machine Tool & Hydraulics202048(11): 86-91 (in Chinese).
136 何月洲, 赵洪伟. 水陆两栖飞机静强度试验悬空支持技术研究及应用[J]. 工程与试验201858(4): 98-101, 105.
  HE Y Z, ZHAO H W. Study on suspended support technology in static strength test of full-scale amphibian aircraft and its application[J]. Engineering & Test201858(4): 98-101, 105 (in Chinese).
137 赵洪伟. 水陆两栖飞机水载荷工况试验液压控制技术应用研究[J]. 今日制造与升级2020(10): 96-98.
  ZHAO H W. Research on application of hydraulic control technology in water load test of amphibious aircraft[J]. Manufacture & Upgrading Today2020(10): 96-98 (in Chinese).
138 尚红星, 王海, 何月洲, 等. 水陆两栖飞机结构强度试验中的水载荷模拟方法[J]. 科学技术与工程201919(14): 371-376.
  SHANG H X, WANG H, HE Y Z, et al. Simulation method of water load in structural strength test of amphibious aircraft[J]. Science Technology and Engineering201919(14): 371-376 (in Chinese).
139 张柁, 张园, 何月洲, 等. 水陆两栖飞机船尾着水试验技术研究及应用[J]. 工程与试验201959(4): 84-87.
  ZHANG T, ZHANG Y, HE Y Z, et al. Research and application of amphibious aircraft stern water test technique[J]. Engineering & Test201959(4): 84-87 (in Chinese).
140 张柁, 何月洲, 王海. 水陆两栖飞机浮筒及其连接结构非对称筒首着水工况试验技术研究及应用[J]. 工程与试验201959(3): 53-56, 75.
  ZHANG T, HE Y Z, WANG H. Amphibious aircraft pontoon and its connection structure symmetric cylinder head water test technical research and application[J]. Engineering & Test201959(3): 53-56, 75 (in Chinese).
141 秦政琪, 李群芳, 刘福佳, 等. 通航水上飞机浮筒静强度试验装置及试验方法: CN114061930A[P]. 2022-02-18.
  QIN Z Q, LI Q F, LIU F J, et al. Static strength test device and test method for navigable seaplane floats: CN114061930A[P]. 2022-02-18 (in Chinese).
142 CHINVORARAT S. Composite wing structure of light amphibious airplane design, optimization, and experimental testing[J]. Heliyon20217(11): e08410.
143 VAN DYCK R. Seaplanes and the towing tank: AIAA-1989-1533[R]. Reston: AIAA, 1989.
144 OKADA S, SUMI Y. On the water impact and elastic response of a flat plate at small impact angles[J]. Journal of Marine Science and Technology20005(1): 31-39.
145 SIEMANN M H, SCHWINN D B, SCHERER J, et al. Advances in numerical ditching simulation of flexible aircraft models[J]. International Journal of Crashworthiness201823(2): 236-251.
146 KáRMáN T. The impact on seaplane floats during landing [J]. 1929.
147 WAGNER H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Journal of Applied Mathematics and Mechanics193212(4): 193-215.
148 SEDOV L. The impact of a solid body floating on the surface of an incompressible fluid: Report 189[R]. Moscow: CAHI, 1934.
149 YU Y T. Virtual masses of rectangular plates and parallelepipeds in water[J]. Journal of Applied Physics194516(11): 724-729.
150 SHIFFMAN M, SPENCER D C. The force of impact on a cone striking a water surface (vertical entry)[J]. Communications on Pure and Applied Mathematics19514(4): 379-417.
151 MONAGHAN R. A review of the essentials of impact force theories for seaplanes and suggestions for approximate design formulae: No.2720 [R]. London: His Majesty’s Stationery Office, 1947.
152 DONG Z S, GAO X P, SUN W. The impact load of wing-In-ground-effect craft in waves and application of hydro-ski[M]∥Practical Design of Ships and Other Floating Structures. Amsterdam: Elsevier, 2001: 97-103.
153 BATTISTIN D, IAFRATI A. Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies[J]. Journal of Fluids and Structures200317(5): 643-664.
154 JUDGE C, TROESCH A, PERLIN M. Initial water impact of a wedge at vertical and oblique angles[J]. Journal of Engineering Mathematics200448(3): 279-303.
155 XU G D, DUAN W Y, WU G X. Numerical simulation of oblique water entry of an asymmetrical wedge[J]. Ocean Engineering200835(16): 1597-1603.
156 褚林塘, 吴彬, 王明振, 等. 地效飞机着水冲击载荷理论计算与试验[J]. 航空学报201637(12): 3698-3705.
  CHU L T, WU B, WANG M Z, et al. Theoretical calculation and experiment on impact loads of landing of wing-in-ground aircraft on water surface[J]. Acta Aeronautica et Astronautica Sinica201637(12): 3698-3705 (in Chinese).
157 YU P Y, LI H, ONG M C. Hydroelastic analysis on water entry of a constant-velocity wedge with stiffened panels[J]. Marine Structures201963: 215-238.
158 LU Y J, DEL BUONO A, XIAO T H, et al. Parametric study on the water impacting of a free-falling symmetric wedge based on the extended von Karman’s momentum theory[J]. Ocean Engineering2023271: 113773.
159 GREENHOW M, LIN W M. Nonlinear-free surface effects: Experiments and theory:83-19[R]: Cambridge: MIT, 1983.
160 ABRATE S. Hull slamming[J]. Applied Mechanics Reviews201164(6): 060803.
161 MüLLER M, WOIDT M, HAUPT M, et al. Challenges of fully-coupled high-fidelity ditching simulations[J]. Aerospace20196(2): 10.
162 TAKASHI N, HUGHES T J R. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body[J]. Computer Methods in Applied Mechanics and Engineering199295(1): 115-138.
163 CERQUAGLIA M L, THOMAS D, BOMAN R, et al. A fully partitioned Lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects[J]. Computer Methods in Applied Mechanics and Engineering2019348: 409-442.
164 MOUSAVIRAAD S M, WANG Z Y, STERN F. URANS studies of hydrodynamic performance and slamming loads on high-speed planing hulls in calm water and waves for deep and shallow conditions[J]. Applied Ocean Research201551: 222-240.
165 de MARCO A, MANCINI S, MIRANDA S, et al. Experimental and numerical hydrodynamic analysis of a stepped planing hull[J]. Applied Ocean Research201764: 135-154.
166 WANG H, ZHU R C, ZHA L, et al. Experimental and numerical investigation on the resistance characteristics of a high-speed planing catamaran in calm water[J]. Ocean Engineering2022258: 111837.
167 DONEA J, HUERTA A, PONTHOT J P, et al. Encyclopedia of computational mechanics[M]. 2nd ed. Blackwell: Wiley, 2004: 414-437.
168 NOH W F. CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code: UCRL-7463[R]. Livermore: University of California, 1963.
169 FRANCK R M, LAZARUS R B. Mixed eulerian-lagrangian method[M]. New York: Academic Press, 1964: 3.
170 HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics197414(3): 227-253.
171 NAZEM M, SHENG D, CARTER J P, et al. Arbitrary Lagrangian-Eulerian method for large-strain consolidation problems[J]. International Journal for Numerical and Analytical Methods in Geomechanics200832(9): 1023-1050.
172 何涛. 流固耦合新算法研究及其气动弹性应用[D]. 上海: 上海交通大学, 2013.
  HE T. Novel partitioned coupling algorithms for fluid-structure interaction with applications to aeroelasticity[D]. Shanghai: Shanghai Jiao Tong University, 2013 (in Chinese).
173 CAI Y N, LU J H, WANG S Q, et al. A Lagrangian point approximation-based immersed boundary–lattice boltzmann method for FSI problems involving deformable body[J]. International Journal of Computational Methods202219(3): 2150070.
174 NG K C, ALEXIADIS A, CHEN H L, et al. Numerical computation of fluid-solid mixture flow using the SPH-VCPM-DEM method[J]. Journal of Fluids and Structures2021106: 103369.
175 HU P, XUE L P, MAO S L, et al. Material point method applied to fluid-structure interaction (FSI)/aeroelasticity problems: AIAA-2010-1464[R]. Reston: AIAA, 2010.
176 ANGHILERI M, CASTELLETTI L, FRANCESCONI E. Water impact: experimental tests and numerical simulations using meshless methods[C]∥ 6th European LS-DYNA Users’ Conference. Berlin : Springer, 2007 : 1.183-1.194.
177 SUN P N, LE TOUZé D, OGER G, et al. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions[J]. Ocean Engineering2021221: 108552.
178 MAZHAR F, JAVED A, XING J T, et al. On the meshfree particle methods for fluid-structure interaction problems[J]. Engineering Analysis With Boundary Elements2021124: 14-40.
179 何建东. 基于SPH的流固耦合数值模拟方法及其GPU加速技术研究[D]. 北京: 北京理工大学, 2018.
  HE J D. Numerical simulation of hydro-elastic problems based on GPU-accelerated SPH method[D]. Beijing: Beijing Institute of Technology, 2018 (in Chinese).
180 SIEMANN M H, LANGRAND B. Coupled fluid-structure computational methods for aircraft ditching simulations: Comparison of ALE-FE and SPH-FE approaches[J]. Computers & Structures2017188: 95-108.
181 KIM J D, LI Y, LI X L. Simulation of parachute FSI using the front tracking method[J]. Journal of Fluids and Structures201337: 100-119.
182 HE P, QIAO R. A full-Eulerian solid level set method for simulation of fluid-structure interactions[J]. Microfluidics and Nanofluidics201111(5): 557-567.
183 PESKIN C S. Flow patterns around heart valves: A numerical method[J]. Journal of Computational Physics197210(2): 252-271.
184 SHU C, LIU N, CHEW Y T. A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder[J]. Journal of Computational Physics2007226(2): 1607-1622.
185 ANTOCI C, GALLATI M, SIBILLA S. Numerical simulation of fluid-structure interaction by SPH[J]. Computers & Structures200785(11-14): 879-890.
186 RAFIEE A, THIAGARAJAN K P. An SPH projection method for simulating fluid-hypoelastic structure interaction[J]. Computer Methods in Applied Mechanics and Engineering2009198(33-36): 2785-2795.
187 胡奇, 王明振, 吴彬, 等. 网格因素对水陆两栖飞机着水性能计算结果的影响[J]. 船海工程202150(4): 10-13.
  HU Q, WANG M Z, WU B, et al. Influence of grid factors on the calculation results of landing performance for amphibious aircraft[J]. Ship & Ocean Engineering202150(4): 10-13 (in Chinese).
188 WU G X, SUN H, HE Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[J]. Journal of Fluids and Structures200419(3): 277-289.
189 XIAO J, BATRA R C. Delamination in sandwich panels due to local water slamming loads[J]. Journal of Fluids and Structures201448: 122-155.
190 CHAUDHRY A Z, SHI Y, PAN G. Recent developments on the water entry impact of wedges and projectiles[J]. Ships and Offshore Structures202217(3): 695-714.
191 孙华伟. 滑行面形状对滑行艇阻力与航态影响数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2012.
  SUN H W. Numerical analysis of planing-hull surface shape on resistance and sailing attitude[D]. Harbin: Harbin Engineering University, 2012 (in Chinese).
192 GARLAND W R, MAKI K J. A numerical study of a two-dimensional stepped planing surface[J]. Journal of Ship Production and Design201228(2): 60-72.
193 ABBAS D, ARMAN E, SIMONE M. Performance prediction of two-stepped planing hulls using morphing mesh approach[J]. Journal of Ship Production and Design201834(3): 236-248.
194 陈思宇, 孙建红, 孙智, 等. 地效飞行器双断阶机腹着水砰击过载分析[J]. 航空工程进展202213(6): 134-143.
  CHEN S Y, SUN J H, SUN Z, et al. Analysis of water landing overload of the double-stepped wing-in-ground aircraft[J]. Advances in Aeronautical Science and Engineering202213(6): 134-143 (in Chinese).
195 李新颖, 王明振, 唐彬彬. 水陆两栖飞机高性能复合船型耐波性数值计算与水池试验[J]. 科学技术与工程202020(5): 2099-2104.
  LI X Y, WANG M Z, TANG B B. Numerical calculation and tank test on seakeeping performance of high performance hybrid monohull of amphibious aircraft[J]. Science Technology and Engineering202020(5): 2099-2104 (in Chinese).
196 UTOMO A, GUNAWAN, YANUAR. Biomimetics design optimization and drag reduction analysis for Indonesia N219 seaplanes catamaran float[J]. Processes20219(11): 2024.
197 HU Q, WU B, WANG M Z, et al. Numerical simulation of wave landing loads characteristics of twin-float seaplane[J]. IOP Conference Series: Materials Science and Engineering2019692(1): 012024.
198 SETH A, LIEM R P. Hydrofoil conceptual design and optimization framework for amphibious aircraft: AIAA-2019-3552[R]. Reston: AIAA, 2019.
199 罗琳胤, 杨仕福, 吕继航. 水陆两栖飞机着水响应模型与数值分析[J]. 机械设计201330(8): 86-89.
  LUO L Y, YANG S F, LV J H. Analysis and numeral simulation of water landing response model for amphibian[J]. Journal of Machine Design201330(8): 86-89 (in Chinese).
200 姚小虎, 黄愉太, 欧智成, 等. 基于CEL算法的水陆两栖飞机水上降落动力特性分析[J]. 华南理工大学学报(自然科学版)201543(6): 110-115.
  YAO X H, HUANG Y T, OU Z C, et al. CEL algorithm-based analysis of dynamic characteristics of amphibious aircraft landing on water[J]. Journal of South China University of Technology (Natural Science Edition)201543(6): 110-115 (in Chinese).
201 DUAN X P, SUN W P, CHEN C, et al. Numerical investigation of the porpoising motion of a seaplane planing on water with high speeds[J]. Aerospace Science and Technology201984: 980-994.
202 孙丰, 吴彬, 廉滋鼎, 等. 着水姿态对大型水陆两栖飞机着水性能的影响[J]. 船舶力学201923(4): 397-404.
  SUN F, WU B, LIAN Z D, et al. Influence of pitch angle on water-entry performance of large-scale amphibian aircraft hull[J]. Journal of Ship Mechanics201923(4): 397-404 (in Chinese).
203 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报202046(4): 830-838.
  ZHAO Y K, QU Q L, LIU P Q. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics202046(4): 830-838 (in Chinese).
204 WANG L X, YIN H P, YANG K, et al. Water takeoff performance calculation method for amphibious aircraft based on digital virtual flight[J]. Chinese Journal of Aeronautics202033(12): 3082-3091.
205 吕继航, 曾毅, 杨荣. 大型水陆两栖飞机的动力学响应特性[J]. 航空制造技术202063(20): 64-69.
  Lü J H, ZENG Y, YANG R. Dynamic response characteristics of large amphibious aircraft[J]. Aeronautical Manufacturing Technology202063(20): 64-69 (in Chinese).
206 卢昱锦, 肖天航, 邓双厚, 等. 着水初始条件对水陆两栖飞机着水性能的影响[J]. 航空学报202142(7): 124483.
  LU Y J, XIAO T H, DENG S H, et al. Effects of initial conditions on water landing performance of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica202142(7): 124483 (in Chinese).
207 CHEN J C, XIAO T H, WANG M Z, et al. Numerical study of wave effect on aircraft water-landing performance[J]. Applied Sciences202212(5): 2561.
208 胡大勇, 杨嘉陵, 王赞平, 等. 某型飞机水上迫降数值化模型[J]. 北京航空航天大学学报200834(12): 1369-1374, 1383.
  HU D Y, YANG J L, WANG Z P, et al. Numerical model for a commercial aircraft water landing[J]. Journal of Beijing University of Aeronautics and Astronautics200834(12): 1369-1374, 1383 (in Chinese).
209 胡海波, 孟妍, 杨昆. 某型水陆两栖飞机水上降落机身强度分析[J]. 应用科技202249(4): 63-69.
  HU H B, MENG Y, YANG K. Fuselage strength analysis of amphibious aircraft for water landing[J]. Applied Science and Technology202249(4): 63-69 (in Chinese).
210 中国民用航空局, 运输类旋翼航空器适航规定: CCAR-29 [S]. 北京: 中国民用航空局, 2017.
  Civil Aviation Administration of China. Airworthiness standards of transport category rotorcraft: CCAR-29 [S]. Beijing: Civil Aviation Administration of China, 2017 (in Chinese).
211 Federal Aviation Administration. Certification of transport category rotorcraft: AC-29-2C [S]. Washington D.C.: Federal Aviation Administration, 2014.
212 HUGHES K, CAMPBELL J, VIGNJEVIC R. Application of the finite element method to predict the crashworthy response of a metallic helicopter under floor structure onto water[J]. International Journal of Impact Engineering200835(5): 347-362.
213 SIEMANN M. Numerical and experimental investigation of the structural behavior during aircraft emergency landing on water[D]. Stuttgart: University of Stuttgart, 2016: 1-45.
214 SIEMANN M H, KOHLGRüBER D, VOGGENREITER H. Numerical simulation of flexible aircraft structures under ditching loads[J]. CEAS Aeronautical Journal20178(3): 505-521.
215 FISHER L J, HOFFMAN E L. Model ditching Investigation of the Douglas DC-4 and DC-6 Airplanes: RM-SL9K02A[R]. Washingdon D.C.: NACA, 1950.
216 THOMPSON W. Model ditching investigation of the Boeing 707 jet transport: NACA RM-SL55K08[R]. Washington, D.C.: NACA, 1955.
217 STEINER M F. Accelerations and bottom pressures measured on a B-24D airplane in a ditching test: NACA-WR-L-648[R]. Washington, D.C.: NACA, 1944.
218 FISHER L J, HOFFMAN E. Ditching investigations of dynamic models and effects of design parameters on ditching characteristics: NACA-TN-3946[R]. Washington, D.C.: NACA, 1957.
219 SZEBEHELY V G, BASIN E. Progress in theoretical and experimental studies of ship slamming[C]∥ Proceedings of the First Conference on Ships and Waves. Berkeley: University of California. 1955: 230-250.
220 SZEBEHELY V G. Hydrodynamic impact[J]. Applied Mechanics Reviews195912(5): 297-300.
221 SHOJI H, MINEGISHI M, MIYAKI H, et al. Hydrodynamic impact estimation of transport fuselage structure with vertical drop water impact tests: AIAA-2008-1746[R]. Reston: AIAA, 2008.
222 BENSON H E. Water impact of the Apollo spacecraft[J]. Journal of Spacecraft and Rockets19663(8): 1282-1284.
223 BAKER W E, WESTINE P S. Model tests for structural response of Apollo command module to water impact[J]. Journal of Spacecraft and Rockets19674(2): 201-208.
224 MAY A. Review of water-entry theory and data[J]. Journal of Hydronautics19704(4): 140-142.
225 STUBBS S M. Water landing characteristics of a model of a winged reentry vehicle: NASA-TN-D-6859[R]. Washington, D.C.: NASA, 1972.
226 WIERZBICKI T, YUE D K. Spacecraft crashworthiness-towards reconstruction of the challenger accident[J]. AMD (The American Society of Mechanical Engineers)198679: 31-46.
227 ALCEDO A M. Design and testing of float landing gear systems for helicopters[J]. Journal of the American Helicopter Society198025(3): 3-9.
228 REILLY M. Lightweight emergency flotation system for the CH-46 helicopter: NADC-79169-60[R]. Warminster: Naval Air Development Center, 1981.
229 MULLER M, GREENWOOD R, RICHARDS M K, et al. Survey and analysis of rotorcraft flotation systems[R]. Harbor Township: Galaxy Scientific Corp Egg, 1996.
230 SIMITSES G J, STARNES J H J, REZAEEPAZHAND J. Structural similitude and scaling laws for plates and shells: A review[M]∥DURBAN D, GIVOLI D, SIMMONDS J G, editors. Advances in the Mechanics of Plates and Shells. Dordrecht: Springer Netherlands, 2001: 295-310.
231 Civil Aviation Authority. Review of Helicopter Offshore Safety and Survival: CAP-641[R]. London: Civil Aviation Authority, 1995.
232 CLIFFORD W. Helicopter crashworthiness: CAA paper 96005[R]. London: Civil Aviation Authority, 1996.
233 DELETOMBE E, DELSART D, KOHLGRüBER D, et al. Improvement of numerical methods for crash analysis in future composite aircraft design[J]. Aerospace science and technology20004(3): 189-199.
234 MCCARTHY M A, HARTE C G, WIGGENRAAD J F M, et al. Finite element modelling of crash response of composite aerospace sub-floor structures[J]. Computational Mechanics200026(3): 250-258.
235 PENTEC?TE N, VIGLIOTTI A. Crashworthiness of helicopters on water: Test and simulation of a full-scale WG30 impacting on water[J]. International Journal of Crashworthiness20038(6): 559-572.
236 BOUSCASSE B, OHANA J, ZARIM M, et al. Report on test data on helicopter ditching: D5.2[R]. Belgium: SARAH, 2019.
237 汪正中, 陈立霞, 索谦, 等. 直升机着水载荷试验研究[J]. 南京航空航天大学学报201749(2): 258-263.
  WANG Z Z, CHEN L X, SUO Q, et al. Test research on helicopter ditching load[J]. Journal of Nanjing University of Aeronautics & Astronautics201749(2): 258-263 (in Chinese).
238 吴世德, 季洪兴. C-5A飞机的水上迫降动力模型试验[J]. 民用飞机设计与研究1991(2): 52-57.
  WU S D, JI H. Dynamic model test of water crash landing for C-5A[J]. Civil Aircraft Design & Research1991(2): 52-57 (in Chinese).
239 张韬, 李书, 代恒超. 大型客机水上迫降尾部吸力效应分析[J]. 中国科学: 技术科学201242(12): 1407-1415.
  ZHANG T, LI S, DAI H C. Analysis of tail suction effect of large passenger plane forced landing on water[J]. Scientia Sinica (Technologica)201242(12): 1407-1415 (in Chinese).
240 徐文岷, 李凯. 民用飞机弹性结构水上迫降试验载荷研究[J]. 航空学报201435(4): 1012-1018.
  XU W M, LI K. Research on civil aircraft elastic structure ditching test load[J]. Acta Aeronautica et Astronautica Sinica201435(4): 1012-1018 (in Chinese).
241 陈英华, 吴希明, 袁李斌. 直升机典型元组件垂直入水试验研究[J]. 南京航空航天大学学报201850(2): 186-192.
  CHEN Y H, WU X M, YUAN L B. Experimental research on vertical water entry of helicopter typical components[J]. Journal of Nanjing University of Aeronautics & Astronautics201850(2): 186-192 (in Chinese).
242 SCHNITZER E, HATHAWAY M E. Estimation of hydrodynamic impact loads and pressure distributions on bodies approximating elliptical cylinders with special reference to water landings of helicopters: NACA-TN-2889[R]. Washington, D.C.: NACA, 1953.
243 COINTE R. Two-dimensional water-solid impact[J]. Journal of Offshore Mechanics and Arctic Engineering1989111(2): 109-114.
244 MEI X M, LIU Y M, YUE D K P. On the water impact of general two-dimensional sections[J]. Applied Ocean Research199921(1): 1-15.
245 KOROBKIN A A, KHABAKHPASHEVA T I. Regular wave impact onto an elastic plate[J]. Journal of Engineering Mathematics200655(1): 127-150.
246 刘沛清, 屈秋林, 郭保东, 等. 数值计算技术在飞机水上迫降中的应用[J]. 力学与实践201436(3): 278-284.
  LIU P Q, QU Q L, GUO B D, et al. Application of computational fluid dynamics in the planned ditching of a transport airplane[J]. Mechanics in Engineering201436(3): 278-284 (in Chinese).
247 童明波, 陈吉昌, 李乐, 等. 飞行器水载荷结构完整性数值模拟现状与展望-Part I:水上迫降和水上漂浮[J]. 航空学报202142(5): 524530.
  TONG M B, CHEN J C, LI L, et al. State of the art and perspectives of numerical simulation of aircraft structural integrity from hydrodynamics-Part Ⅰ: Ditching and floating[J]. Acta Aeronautica et Astronautica Sinica202142(5): 524530 (in Chinese).
248 罗文莉, 陈书涌, 陈保兴. 民用飞机水上迫降数值仿真方法研究进展[J]. 航空工程进展202213(5): 14-27.
  LUO W L, CHEN S Y, CHEN B X. Research progress of numerical simulation methods for civil aircraft ditching[J]. Advances in Aeronautical Science and Engineering202213(5): 14-27 (in Chinese).
249 KROSS D, KIEFLING L, MURPHY N, et al. Space Shuttle solid rocket booster initial water impact loads and dynamics-Analysis, tests, and flight experience: AIAA-1983-0956[R] Reston: AIAA, 1983.
250 GHAFFARI F. Analytical method for the ditching analysis of an airborne vehicle[J]. Journal of Aircraft199027(4): 312-319.
251 WITTLIN G, RAPAPORT M B. Naval rotorcraft water impact crash simulation using program KRASH[C]∥ 49th Annual Forum Proceedings-American Helicopter Society. St. Louis: American Helicopter Society, 1993: 737-737.
252 CLIMENT H, BENITEZ L, ROSICH F, et al. Aircraft ditching numerical simulation[C]∥ 25th International Congress of the Aeronautical Sciences. Bonn: ICAS, 2006: 1-16.
253 CAMPBELL J. Prediction of aircraft structural response during ditching: An overview of the SMAES project[C]∥ 11th World Congress on Computational Mechanics. Barcelona: International Center for Numerical Methods in Engineering, 2014: a2048.
254 WOODGATE M A, BARAKOS G N, SCRASE N, et al. Simulation of helicopter ditching using smoothed particle hydrodynamics[J]. Aerospace Science and Technology201985: 277-292.
255 CLIMENT H, ARéVALO F, VIANA J T, et al. Ditching loads numerical and experimental alternatives[C]∥ International Forum on Aerolasticity and Structural Dynamics. 2019: 1514-1532.
256 HAMMANI I. Improvement of the SPH method for multiphase flows application to the emergency water landing of aircrafts: Application to the emergency water landing of aircrafts[D]. Nantes: école centrale de Nantes, 2020:5-105.
257 朱晓艳. 客机水上迫降强度数值分析[D]. 武汉: 武汉理工大学, 2012.
  ZHU X Y. Numerical analysis on strength of airliner ditching[D]. Wuhan: Wuhan University of Technology, 2012 (in Chinese).
258 QU Q L, HU M X, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft201552(5): 1550-1558.
259 ZHENG Y L, QU Q L, LIU P Q, et al. Numerical analysis of the porpoising motion of a blended wing body aircraft during ditching[J]. Aerospace Science and Technology2021119: 107131.
260 高飞. 典型民机机身段垂直入水冲击数值模拟[D]. 天津: 中国民航大学, 2021.
  GAO F. Numerical simulation of vertical water impact of the fuselage section of typical civil aircraft[D]. Tianjin: Civil Aviation University of China, 2021 (in Chinese).
261 YANG L, WEI Y J, WANG C, et al. Viscoelasticity dependence on hydrodynamic responses during water entry[J]. Ocean Engineering2023272: 113890.
文章导航

/