面向巡航任务的自适应循环发动机进/发匹配
收稿日期: 2023-03-02
修回日期: 2023-03-20
录用日期: 2023-06-07
网络出版日期: 2023-06-16
基金资助
国家科技重大专项(J2019-III-0009-0053);先进航空动力创新工作站项目(HKCX2020020022);国家自然科学基金(52372389)
Inlet/engine matching of adaptive cycle engine for cruise mission
Received date: 2023-03-02
Revised date: 2023-03-20
Accepted date: 2023-06-07
Online published: 2023-06-16
Supported by
National Science and Technology Major Project(J2019-III-0009-0053);Project of Advanced Jet Propulsion Creativity Center(HKCX2020020022);National Natural Science Foundation of China(52372389)
进/发匹配是整个推进系统稳定、高效、经济工作的前提。针对自适应循环发动机的进/发匹配问题开展研究,提出利用自适应循环发动机特有的FLADE (Fan on Blade)部件实现亚/超声速巡航任务下的进/发匹配。首先,根据进/发匹配原理,分析了超声速进气道流量特性与FLADE部件的作用,在此基础上发展了超声速进气道/自适应循环发动机一体化数学模型;其次,研究了FLADE导叶开、闭状态下发动机的高度、速度特性,结合战机的亚/超声速巡航任务需求,设计了自适应循环发动机进气道捕获面积以实现进/发匹配;最后,在发动机亚/超声速巡航任务点进行了模拟仿真,结果表明在亚声速巡航点打开FLADE导叶吞入溢流能够使进气道的工作点从亚临界向临界状态移动,推进系统降低10.5%的油耗和1%的安装损失,在超声速巡航点下为同时满足进/发匹配特性及发动机安装推力需求,则需要关闭FLADE导叶提高推进系统的单位推力。
王一凡 , 陈浩颖 , 张海波 . 面向巡航任务的自适应循环发动机进/发匹配[J]. 航空学报, 2024 , 45(2) : 128637 -128637 . DOI: 10.7527/S1000-6893.2023.28637
Inlet and engine matching is the premise of stable, efficient and economic work of the whole propulsion system. In this paper, the matching problem between the inlet and the engine of the adaptive cycle engine is studied, and use of the special FLADE (Fan on Blade) components of the adaptive cycle engine to achieve the inlet and engine matching in the subsonic/supersonic cruise missions is proposed. Firstly, according to the matching principle of the inlet and engine, this paper analyzes the flow characteristics of the supersonic inlet and the role of FLADE components, and develops an integrated mathematical model of the supersonic inlet/adaptive cycle engine. Secondly, the altitude and speed characteristics of the engine with the open and closed FLADE guide vanes are studied. Combined with the subsonic/supersonic cruise mission requirements of the fighter, the capture area and throat area of the adaptive cycle engine inlet are designed, and the matching between the inlet and the engine is realized. Finally, simulation is carried out at the sub/supersonic cruise task points of the engine. The results show that opening the FLADE guide vane swallowing overflow at the subsonic cruise point can move the working point of the inlet from the subcritical to critical state, reducing the fuel consumption of the propulsion system by 10.5% and the installation loss by 1%. At the supersonic cruise point, to meet the matching characteristics of the inlet and the engine as well as the engine installation thrust requirements, it is necessary to close the FLADE guide vane to increase the unit thrust of the propulsion system.
1 | 陈大光,张津. 飞机-发动机性能匹配与优化[M]. 北京: 北京航空航天大学出版社, 1990. |
CHEN D G, ZHANG J. Aircraft-engine performance matching and optimization[M]. Beijing: Beihang University Press, 1990 (in Chinese). | |
2 | 杨国才. 论机动飞机机体/进气道一体化[J]. 推进技术, 1999, 20(2): 103-107. |
YANG G C. Review of airframe/inlet integration of maneuver fighter aircraft[J]. Journal of Propulsion Technology, 1999, 20(2): 103-107 (in Chinese). | |
3 | 朱之丽, 陈敏, 唐海龙. 航空燃气涡轮发动机工作原理及性能[M]. 上海: 上海交通大学出版社, 2014: 171-212. |
ZHU Z L, CHEN M, TANG H L. Working principle and performance of aircraft gas turbine engines[M]. Shanghai: Shanghai Jiao Tong University Press, 2014: 171-212 (in Chinese). | |
4 | MATTINGLY J D, HEISER W H, PRATT D T. Aircraft engine design[M]. 2nd ed. Reston: AIAA, 2002. |
5 | 黄庆平. Ma0-2几何可调进气道特性分析及数学建模[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
HUANG Q P. Characteristic analysis and mathmatical modeling of Ma0-2 geometric adjustable inlet[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). | |
6 | 孙丰勇, 张海波, 叶志锋. 超声速进气道/发动机一体化控制[J]. 航空动力学报, 2014, 29(10): 2279-2287. |
SUN F Y, ZHANG H B, YE Z F. Integrated control for supersonic inlet/engine[J]. Journal of Aerospace Power, 2014, 29(10): 2279-2287 (in Chinese). | |
7 | 叶东鑫, 张海波, 陈浩颖. 基于辅助进气门的进气道/发动机一体化控制[J]. 北京航空航天大学学报, 2020, 46(3): 608-615. |
YE D X, ZHANG H B, CHEN H Y. Inlet/engine integrated control based on auxiliary door[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 608-615 (in Chinese). | |
8 | KOPASAKIS G, CONNOLLY J. Shock positioning controls design for a supersonic inlet[C]∥ Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2009. |
9 | GRANT R. Adaptive engine[J]. Air Force Magazine, 2012, 95(9): 62-64. |
10 | PATEL H R. Parametric cycle analysis of adaptive cycle engine[D]. Arlington: The University of Texas at Arlington, 2016. |
11 | 梁春华, 索德军, 孙明霞. 美国第6代战斗机发动机关键技术综述[J]. 航空发动机, 2016, 42(2): 93-97. |
LIANG C H, SUO D J, SUN M X. A review on the key technologies of the sixth generation fighter engines in the US[J]. Aeroengine, 2016, 42(2): 93-97 (in Chinese). | |
12 | 孙明霞, 梁春华. 美国自适应发动机研究的进展与启示[J]. 航空发动机, 2017, 43(1): 95-102. |
SUN M X, LIANG C H. Progress and revelation of US adaptive cycle engine development[J]. Aeroengine, 2017, 43(1): 95-102 (in Chinese). | |
13 | 李瑞军, 王靖凯, 吴濛. 自适应变循环发动机性能优势评价方法[J]. 航空发动机, 2021, 47(2): 17-21. |
LI R J, WANG J K, WU M. Performance advantage evaluation method of adaptive variable cycle engine[J]. Aeroengine, 2021, 47(2): 17-21 (in Chinese). | |
14 | JOHNSON J E. Spillage drag and infrared reducing flade engine: US5404713[P]. 1995-04-11. |
15 | ZHENG J C, CHEN M, TANG H L. Matching mechanism analysis on an adaptive cycle engine[J]. Chinese Journal of Aeronautics, 2017, 30(2): 706-718. |
16 | JONES J R, WELGE H. Status of an inlet configuration trade study for the Douglas HSCT: N94-33506[R]. Washington, D.C.: NASA, 1992. |
17 | 李斌, 陈敏, 朱之丽, 等. 自适应循环发动机不同工作模式稳态特性研究[J]. 推进技术, 2013, 34(8): 1009-1015. |
LI B, CHEN M, ZHU Z L, et al. Steady performance investigation on various modes of an adaptive cycle aero-engine[J]. Journal of Propulsion Technology, 2013, 34(8): 1009-1015 (in Chinese). | |
18 | 陈敏, 张纪元, 唐海龙, 等. 自适应循环发动机总体设计技术探讨[J]. 航空动力学报, 2022, 37(10): 2046-2058. |
CHEN M, ZHANG J Y, TANG H L, et al. Discussion on overall performance design technology of adaptive cycle engine[J]. Journal of Aerospace Power, 2022, 37(10): 2046-2058 (in Chinese). | |
19 | 郑俊超, 唐海龙, 陈敏, 等. 自适应循环发动机典型工况不同工作模式性能对比研究[J]. 工程热物理学报, 2022, 43(7): 1743-1750. |
ZHENG J C, TANG H L, CHEN M, et al. Operating modes performance comparison research in typical working conditions on an adaptive cycle engine[J]. Journal of Engineering Thermophysics, 2022, 43(7): 1743-1750 (in Chinese). | |
20 | CHEN M, ZHANG J Y, TANG H L. Performance analysis of a three-stream adaptive cycle engine during throttling[J]. International Journal of Aerospace Engineering, 2018, 2018: 1-16. |
21 | 孟鑫, 朱之丽, 陈敏. 1种自适应循环发动机亚声速巡航节流性能研究[J]. 航空发动机, 2018, 44(6): 1-5. |
MENG X, ZHU Z L, CHEN M. Study on subsonic cruise throttling performance of an adaptive cycle engine[J]. Aeroengine, 2018, 44(6): 1-5 (in Chinese). | |
22 | 周红, 高翔, 王占学, 等. 变循环发动机对飞机飞行性能影响研究[J]. 航空科学技术, 2019, 30(3): 1-7. |
ZHOU H, GAO X, WANG Z X, et al. Research on the influence of variable cycle engine on aircraft flight performance[J]. Aeronautical Science & Technology, 2019, 30(3): 1-7 (in Chinese). | |
23 | 周红. 变循环发动机特性分析及其与飞机一体化设计研究[D]. 西安: 西北工业大学, 2016. |
ZHOU H. Investigation on the variable cycle engine characteristics and integration design with aircraft[D]. Xi'an: Northwestern Polytechnical University, 2016 (in Chinese). | |
24 | 贾琳渊. 变循环发动机控制规律设计方法研究[D]. 西安: 西北工业大学, 2017. |
JIA L Y. Research on variable cycle engine control schedule design[D]. Xi'an: Northwestern Polytechnical University, 2017 (in Chinese). | |
25 | 张睿. 变循环发动机建模及气动性能研究[D]. 南京: 南京航空航天大学, 2018. |
ZHANG R. Research on modeling and aerodynamic performance for variable cycle engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
26 | 李鹏远. 超声速多状态变循环推进系统综合建模与控制研究[D]. 南京: 南京航空航天大学, 2017. |
LI P Y. Research on the integrated mode and the control method of the supersonic multi state variable cycle propulsion system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese). | |
27 | 祁宏斌, 黄顺洲, 王为丽, 等. 基于进发匹配的自适应循环发动机总体性能设计初步研究[J]. 燃气涡轮试验与研究, 2016, 29(5): 5-10, 39. |
QI H B, HUANG S Z, WANG W L, et al. Adaptive cycle engine performance design based on inlet/engine matching concept[J]. Gas Turbine Experiment and Research, 2016, 29(5): 5-10, 39 (in Chinese). | |
28 | BALL W H, HICKCOX T E. Rapid evaluation of propulsion system effect: AD BO31766[R]. 1978. |
29 | WADIA A R, TURNER A G, DZIECH A M, et al. FLADE fan with different inner and outer airfoil stagger angles at a shroud therebetween: US7758303[P]. 2010-07-20. |
30 | CHEN H Y, ZHANG H B, HU Z Z, et al. The installation performance control of three ducts separate exhaust variable cycle engine[J]. IEEE Access, 2018, 7: 1764-1774. |
31 | 王元, 李秋红, 黄向华. 变循环发动机建模技术研究[J]. 航空动力学报, 2013, 28(4): 954-960. |
WANG Y, LI Q H, HUANG X H. Research of variable cycle engine modeling techniques[J]. Journal of Aerospace Power, 2013, 28(4): 954-960 (in Chinese). |
/
〈 |
|
〉 |