兼顾多模式的核心机驱动风扇级气动设计方法
收稿日期: 2023-02-28
修回日期: 2023-03-20
录用日期: 2023-05-18
网络出版日期: 2023-06-16
基金资助
国家级项目
Aerodynamic design method for core⁃driven fan stage considering multiple modes
Received date: 2023-02-28
Revised date: 2023-03-20
Accepted date: 2023-05-18
Online published: 2023-06-16
Supported by
National Level Project
为了满足多种工作模式性能需求,变循环发动机通常具有多条共同工作线,使得核心机驱动风扇级(CDFS)由常规压气机面向“线”的设计转变为面向“面”的设计。基于CDFS试验效率随进口可调导叶(VIGV)角度调节的变化规律,为兼顾不同工作模式性能,提出了CDFS降流量、压比设计方法。该方法降低了转子、静子的气动负荷,提升了反力度。数值仿真表明,CDFS降流量3.2%、压比5.0%设计使单外涵模式效率、喘振裕度依次降低0.5%和2.2%,双外涵模式效率、喘振裕度提升1.4%和4.7%,双外涵模式的性能收益高于单外涵模式的性能损失。级性能对比表明,降流量、压比设计的性能收益源自VIGV、静子总压恢复系数的提升。基于发动机在不同工作模式下的性能需求优先级,以及CDFS工作点可由前涵道引射器调整的优势,降流量、压比设计是可行的,具有很高的应用潜力。
杨晓飞 , 孙太璐 , 孟德君 , 尹海宝 , 王咏梅 . 兼顾多模式的核心机驱动风扇级气动设计方法[J]. 航空学报, 2024 , 45(2) : 128625 -128625 . DOI: 10.7527/S1000-6893.2023.28625
Variable cycle engines generally have multiple working lines to achieve the performance requirement of multiple working modes, transforming the Core-Driven Fan Stage (CDFS) from the conventional compressor line-oriented design to face-oriented design. Based on CDFS experimental efficiency with the angle adjustment of Variable Inlet Guide Vanes (VIGV), a mass flow-reduction and pressure ratio-reduction design method is proposed to balance different working modes performance. The method lowers the rotor and stator aerodynamic load, and raises the reaction. Numerical simulation of a CDFS with reduced design mass flow of 3.2% and design pressure ratio of 5.0% showed that the efficiency and surge margin decreased by 0.5% and 2.2% respectively in the single bypass mode, and increased by 1.4% and 4.7% respectively in the double bypass mode. The performance profits of the double bypass mode exceeded the losses of the single bypass mode. Comparison of stage characteristics revealed that the performance profits of the mass flow-reduction and pressure ratio-reduction method originated from the improvement in the VIGV and stator total pressure recovery coefficient. Based on the priority of engine performance requirements in different working modes, and the advantage of adjustable CDFS work point through the forward variable area bypass injector, the mass flow and pressure ratio-reduction design method is feasible with high application potential.
1 | 刘红霞. GE公司变循环发动机的发展[J]. 航空发动机, 2015, 41(2): 93-98. |
LIU H X. Development of variable cycle engine in GE[J]. Aeroengine, 2015, 41(2): 93-98 (in Chinese). | |
2 | 方昌德. 变循环发动机[J]. 燃气涡轮试验与研究, 2004, 17(3): 1-5. |
FANG C D. Variable cycle engines[J]. Gas Turbine Experiment and Research, 2004, 17(3): 1-5 (in Chinese). | |
3 | 晏武英. 制空作战飞机发动机发展历程及未来趋势[J]. 航空动力, 2020(1): 59-64. |
YAN W Y. Development and future trend of air superiority fighter engine[J]. Aerospace Power, 2020(1): 59-64 (in Chinese). | |
4 | ALLAN R D. Definition study of a Variable Cycle Experimental Engine (VCEE) and associated test program and test plan: NASA/CR-159419[R]. Washington, D. C.: NASA, 1978. |
5 | FRENCH M W, ALLEN G L. NASA VCE test bed engine aerodynamic performance characteristics and results: AIAA-1981-1594[R]. Reston: AIAA, 1981. |
6 | VDOVIAK J W, KONTT P R, EBACKER J A. Aerodynamic/ acoustic performance of YJ101/ double bypass VCE with coannular plug nozzle: NASA/CR 159869[R] Washington, D. C. : NASA, 1981. |
7 | VDOVIAK J W, EBACKER J A. VCE test bed engine for super-sonic cruise research[R]. Washington, D. C.: NASA, 1980. |
8 | 周红, 王占学, 刘增文, 等. 双外涵变循环发动机可变几何特性研究[J]. 航空学报, 2014, 35(8): 2126-2135. |
ZHOU H, WANG Z X, LIU Z W, et al. Variable geometry characteristics research of double bypass variable cycle engine[J]. Aeronautica et Astronautica Sinica, 2014, 35(8): 2126-2135 (in Chinese). | |
9 | 丁朝霞, 谷彬, 赵龙波, 等. 带核心机驱动风扇级的变循环发动机总体性能研究[J]. 燃气涡轮试验与研究, 2019, 32(5): 15-19, 34. |
DING Z X, GU B, ZHAO L B, et al. Overall performance analysis of variable cycle engine with the core driven fan stage[J]. Gas Turbine Experiment and Research, 2019, 32(5): 15-19, 34 (in Chinese). | |
10 | 张鑫, 刘宝杰. 核心机驱动风扇级的气动设计特点分析[J]. 航空动力学报, 2010, 25(2): 434-442. |
ZHANG X, LIU B J. Analysis of aerodynamic design characteristics of core driven fan stage[J]. Journal of Aerospace Power, 2010, 25(2): 434-442 (in Chinese). | |
11 | 张鑫, 刘宝杰. 核心机驱动风扇级匹配特性分析[J]. 航空学报, 2015, 36(9): 2850-2858. |
ZHANG X, LIU B J. Matching characteristics of core driven fan stage[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 2850-2858 (in Chinese). | |
12 | 曹晖, 周正贵, 胡骏, 等. 兼顾两种模式核心机驱动风扇级气动优化设计[J]. 航空动力学报, 2018, 33(3): 717-728. |
CAO H, ZHOU Z G, HU J, et al. Aerodynamic optimization design of core driven fan stage on balance of two modes[J]. Journal of Aerospace Power, 2018, 33(3): 717-728 (in Chinese). | |
13 | 赖安卿. 核心机驱动风扇级气动布局研究[D]. 南京: 南京航空航天大学, 2013. |
LAI A Q. Research on aerodynamic design of core driven fan stage[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). | |
14 | 王前, 胡骏, 屠宝锋, 等. 核心机驱动风扇级可变弯度导叶设计方法[J]. 推进技术, 2016, 37(10): 1855-1859. |
WANG Q, HU J, TU B F, et al. Method of variable camber inlet guide vanes design on core driven fan stage[J]. Journal of Propulsion Technology, 2016, 37(10): 1855-1859 (in Chinese). | |
15 | 陈仲光, 张志舒, 梁彩云,等. 基于常规涡扇发动机发展变循环发动机的研究[J]. 沈阳航空航天大学学报, 2013, 30(3): 10-13. |
CHEN Z G, ZHANG Z S, LIANG C Y, et al. Research on the development of variable cycle engines from conventional turbofan engines[J]. Journal of Shenyang Aerospace University, 2013, 30(3): 10-13 (in Chinese). | |
16 | 李晓庆. 兼顾多状态的核心机驱动风扇级与高压压气机设计[J]. 航空发动机, 2019, 45(3): 7-11. |
LI X Q. Design on core driven fan stage (CDFS) and high pressure compressor of multimode consideration[J]. Aeroengine, 2019, 45(3): 7-11 (in Chinese). | |
17 | HOLLOWAY P, KNIGHT G L, KOCK C C, et al. Energy efficient engine. High pressure compressor detail design report: NASA CR-165558[R]. Washington, D.C.: NASA, 1982. |
/
〈 |
|
〉 |