考虑稀薄效应的微槽道流动线性稳定性
收稿日期: 2023-05-05
修回日期: 2023-05-30
录用日期: 2023-06-08
网络出版日期: 2023-06-09
基金资助
国家重点研发计划(2019YFA0405200)
Linear stability of microchannel flow considering rarefaction effects
Received date: 2023-05-05
Revised date: 2023-05-30
Accepted date: 2023-06-08
Online published: 2023-06-09
Supported by
National Key R&D Program of China(2019YFA0405200)
微槽道是微机电系统(MEMS)的重要组成部件,小尺度特征引起的稀薄效应是影响其流动稳定性不可忽视的重要因素,发展适用于稀薄流的稳定性分析方法,揭示稀薄效应对微槽道流动稳定性的影响规律,对于微机电系统功能的实现和性能的改善具有重要意义。基于Boltzmann Bhatnagar-Gross-Krook(Boltzmann-BGK)方程,结合Maxwell边界条件,通过求解特征值问题的方法对恒温情况下的平板Couette和平板Poiseuille流动的稳定性进行了参数影响分析。另外,现有针对Rayleigh-Bénard流动的研究集中于单原子气体,采用Navier-Stokes方程结合滑移修正边界条件的方法,分析了单、双原子气体对Rayleigh-Bénard流动稳定性的影响,并考虑了不同的分子模型。结果表明,对于平板Couette和平板Poiseuille流动,稀薄效应以及增大适应系数均起稳定作用;增大马赫数对Poiseuille流动起不稳定作用,而对Couette流动稳定性的影响规律与扰动波的形式(驻波或行波)相关,当扰动波形式相同,增大马赫数起不稳定作用,当扰动波形式不同,存在马赫数越大流动越稳定的情况。对于Rayleigh-Bénard流动,相较于变硬球和变软球模型的单或双原子气体,硬球双原子气体具有最大的不稳定参数范围;当波数较大时,稀薄效应起稳定作用,当波数较小时,存在稀薄程度越大增长率越大的情况。
毕林 , 邹森 , 唐志共 , 袁先旭 , 吴超 . 考虑稀薄效应的微槽道流动线性稳定性[J]. 航空学报, 2023 , 44(15) : 528964 -528964 . DOI: 10.7527/S1000-6893.2023.28964
Microchannels are an important component of the microelectromechanical system (MEMS), and the rarefaction effects caused by small scale characteristics is an important factor that cannot be ignored in affecting the flow stability of microchannels. Developing stability analysis methods suitable for rarefied flows and revealing the influence of rarefaction effects on the microchannel flow stability are of great significance for function realization and performance improvement of the MEMS. Based on the Boltzmann Bhatnagar-Cross-Krook (Boltzmann BGK) equation and Maxwell boundary condition, parameter influence analysis is conducted on the stability of the plane Couette and Poiseuille flow under low-speed isothermal conditions by solving the eigenvalue problem. In addition, existing research on Rayleigh-Bénard flow focuses on monatomic gases. Using the Navier-Stokes equation combined with modified boundary conditions, the effects of monatomic and diatomic gases on the stability of Rayleigh-Bénard flow are analyzed, considering different molecular models. The results show that for the plane Couette and plane Poiseuille flows, the rarefaction effects and the accommodation coefficient increase both play a stabilizing role. Increasing Mach number exhibits a destabilizing effect on the Poiseuille flow, while the rule of influence on the Couette flow stability is related to the form of disturbance waves (standing or traveling waves). In the same disturbance patterns, an increasing Mach number has a destabilizing effect, while in different disturbance patterns, the flow becomes more stable with a larger Mach number. For the Rayleigh-Bénard flow, the hard sphere diatomic gas has the largest unstable parameter range compared to the monatomic or diatomic gas in the variable hard sphere and variable soft sphere models. With a large wave number, the rarefaction effects play a stabilizing role, while a greater degree of rarefaction leads to a larger growth rate with a small wave number.
1 | 周恒, 张涵信. 空气动力学的新问题[J]. 中国科学: 物理学 力学 天文学, 2015, 45(10): 104709. |
ZHOU H, ZHANG H X. New problems of aerodynamics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(10): 104709 (in Chinese). | |
2 | 陈伟芳, 张志成, 吴其芬. 稀薄气体条件下Rayleigh-Bénard系统稳定性的DSMC仿真研究[J]. 空气动力学学报, 2002, 20(2): 211-216. |
CHEN W F, ZHANG Z C, WU Q F. Investigation of Rayleigh-Bénard instability in rarefied gas by DSMC method[J]. Acta Aerodynamica Sinica, 2002, 20(2): 211-216 (in Chinese). | |
3 | 张俊, 樊菁. Rayleigh-Bénard热对流的动理论分析[J]. 科学通报, 2008, 53(18): 2176-2180. |
ZHANG J, FAN J. Dynamic theory analysis of Rayleigh-Bénard thermal convection[J]. Chinese Science Bulletin, 2008, 53(18): 2176-2180 (in Chinese). | |
4 | STEFANOV S, CERCIGNANI C. Monte Carlo simulation of Bénard’s instability in a rarefied gas[J]. European Journal of Mechanics - B/Fluids, 1992, 11(5): 543-553. |
5 | CERCIGNANI C, STEFANOV S. Bénard’s instability in kinetic theory[J]. Transport Theory and Statistical Physics, 1992, 21(4-6): 371-381. |
6 | STEFANOV S, CERCIGNANI C. Monte Carlo simulation of the Taylor-Couette flow of a rarefied gas[J]. Journal of Fluid Mechanics, 1993, 256: 199-213. |
7 | STEFANOV S, CERCIGNANI C. Taylor-Couette flow of a rarefied gas[C]∥Proceedings of the International Symposium on Aerospace and Fluid Science. Sendai: Institute of Fluid Science, Tohoku University, 1994: 490-500. |
8 | STEFANOV S, CERCIGNANI C. Monte Carlo simulation of a channel flow of a rarefied gas[J]. European Journal of Mechanics-B/Fluids, 1994, 13: 93-114. |
9 | STEFANOV S, CERCIGNANI C. Monte Carlo simulation of the propagation of a disturbance in the channel flow of a rarefied gas[J]. Computers & Mathematics With Applications, 1998, 35(1-2): 41-53. |
10 | ESSAGHIR E, OUBARRA A, LAHJOMRI J. Linear stability analysis of laminar flow near a stagnation point in the slip flow regime[J]. The European Physical Journal Plus, 2017, 132(12): 545. |
11 | ESSAGHIR E, HADDOUT Y, OUBARRA A, et al. Non-similar solution of the forced convection of laminar gaseous slip flow over a flat plate with viscous dissipation: Linear stability analysis for local similar solution[J]. Meccanica, 2016, 51(1): 99-115. |
12 | HE X, ZHANG K, CAI C P. Stability analysis on nonequilibrium supersonic boundary layer flow with velocity-slip boundary conditions[J]. Fluids, 2019, 4(3): 142. |
13 | KLOTHAKIS A, QUINTANILHA Jr H, SAWANT S S, et al. Linear stability analysis of hypersonic boundary layers computed by a kinetic approach: A semi-infinite flat plate at Mach 4.5 and 9[J]. Theoretical and Computational Fluid Dynamics, 2022, 36(1): 117-139. |
14 | KLOTHAKIS A, SAWANT S S, QUINTANILHA Jr H, et al. Slip effects on the stability of supersonic laminar flat plate boundary layer[C]∥Proceedings of the AIAA Scitech 2021 Forum. Reston: AIAA, 2021: 2021-1659. |
15 | OU J H, CHEN J. Numerical study of supersonic boundary-layer modal stability for a slightly rarefied gas using Navier-Stokes approach[J]. Physics of Fluids, 2021, 33(11): 114107. |
16 | MANELA A, FRANKEL I. On the Rayleigh–Bénard problem in the continuum limit[J]. Physics of Fluids, 2005, 17(3): 036101. |
17 | BIRD G A. Molecular gas dynamics and the direct simulation of gas flows[M]. Oxford: Clarendon Press, 1994. |
18 | BOYD I D. Predicting breakdown of the continuum equations under rarefied flow conditions[C]∥AIP Conference Proceedings. New York: American Institute of Physics, 2003, 663: 899-906. |
19 | MANELA A, FRANKEL I. On the Rayleigh-Bénard problem in the continuum limit: effects of temperature differences and model of interaction[J]. Physics of Fluids, 2005, 17(11): 118105. |
20 | WANG Y P, KHAYAT R E, ZOBAER M A. Onset of thermal convection of a weakly rarefied Maxwellian gas: A continuum-slip approach[J]. Physics of Fluids, 2021, 33(2): 026102. |
21 | BEN-AMI Y, MANELA A. Effect of heat-flux boundary conditions on the Rayleigh-Bénard instability in a rarefied gas[J]. Physical Review Fluids, 2019, 4(3): 033402. |
22 | VINOGRADOVA O I. Slippage of water over hydrophobic surfaces[J]. International Journal of Mineral Processing, 1999, 56(1-4): 31-60. |
23 | MIN T, KIM J. Effects of hydrophobic surface on stability and transition[J]. Physics of Fluids, 2005, 17(10): 108106. |
24 | SEO J, MANI A. On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2016, 28(2): 025110. |
25 | PRALITS J O, ALINOVI E, BOTTARO A. Stability of the flow in a plane microchannel with one or two superhydrophobic walls[J]. Physical Review Fluids, 2017, 2: 013901. |
26 | XIONG X M, TAO J J. Linear stability and energy stability of plane Poiseuille flow with isotropic and anisotropic slip boundary conditions[J]. Physics of Fluids, 2020, 32(9): 094104. |
27 | CHEN K W, SONG B F. Linear stability of slip pipe flow[J]. Journal of Fluid Mechanics, 2021, 910: A35. |
28 | SPILLE A, RAUH A, BüEHRING H. Critical curves of plane Poiseuille flow with slip boundary conditions[J]. Nonlinear Phenomena in Complex Systems, 2001, 3: 171-173. |
29 | GERSTING J M. Hydrodynamic stability of plane porous slip flow[J]. Physics of Fluids, 1974, 17(11): 2126. |
30 | STRAUGHAN B, HARFASH A J. Instability in Poiseuille flow in a porous medium with slip boundary conditions[J]. Microfluidics and Nanofluidics, 2013, 15(1): 109-115. |
31 | YOSHIDA H, AOKI K. Linear stability of the cylindrical Couette flow of a rarefied gas[J]. Physical Review E, 2006, 73(2): 021201. |
32 | GUO Z L, XU K, WANG R J. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case[J]. Physical Review E, 2013, 88(3): 033305. |
33 | WU C, SHI B C, CHAI Z H, et al. Discrete unified gas kinetic scheme with a force term for incompressible fluid flows[J]. Computers & Mathematics With Applications, 2016, 71(12): 2608-2629. |
34 | LIU H T, CAO Y, CHEN Q, et al. A conserved discrete unified gas kinetic scheme for microchannel gas flows in all flow regimes[J]. Computers & Fluids, 2018, 167: 313-323. |
35 | SHIZGAL B. A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems[J]. Journal of Computational Physics, 1981, 41(2): 309-328. |
36 | MALIK M R. Numerical methods for hypersonic boundary layer stability[J]. Journal of Computational Physics, 1990, 86(2): 376-413. |
37 | HE X Y, SHAN X W, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J]. Physical Review E, 1998, 57(1): R13-R16. |
38 | HU S, ZHONG X L. Linear stability of viscous supersonic plane Couette flow[J]. Physics of Fluids, 1998, 10(3): 709-729. |
39 | SCHMID P J, HENNINGSON D S. Stability and transition in shear flows[M]. New York: Springer, 2001. |
/
〈 |
|
〉 |