固体力学与飞行器总体设计

基于CDM理论与SVM模型的2014-T6铝合金疲劳寿命预测

  • 高同州 ,
  • 贺小帆 ,
  • 王晓雷 ,
  • 李紫光 ,
  • 朱振涛 ,
  • 詹志新
展开
  • 1.北京航空航天大学 航空科学与工程学院, 北京 100191
    2.北京宇航系统工程研究所, 北京 100076
.E-mail: zzxupc@163.com

收稿日期: 2023-05-03

  修回日期: 2023-05-22

  录用日期: 2023-06-07

  网络出版日期: 2023-06-09

基金资助

国家自然科学基金(12002011)

Fatigue life prediction of 2014-T6 aluminum alloy based on CDM theory and SVM model

  • Tongzhou GAO ,
  • Xiaofan HE ,
  • Xiaolei WANG ,
  • Ziguang LI ,
  • Zhentao ZHU ,
  • Zhixin ZHAN
Expand
  • 1.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China.
    2.Beijing Institute of Astronautical Systems Engineering,Beijing 100076,China
E-mail: zzxupc@163.com

Received date: 2023-05-03

  Revised date: 2023-05-22

  Accepted date: 2023-06-07

  Online published: 2023-06-09

Supported by

National Natural Science Foundation of China(12002011)

摘要

基于连续损伤力学(CDM)理论与支持向量机(SVM)模型,建立了一种疲劳寿命预测的新方法,旨在提高2014-T6铝合金材料疲劳寿命预测的准确性。首先,通过采用连续损伤力学模型及基于ABAQUS的UMAT子程序的二次开发,建立了一种用于预测2014-T6铝合金疲劳寿命的损伤力学有限元数值实现方法,并提出了基于粒子群算法的材料参数的标定方法。然后,为了进一步优化预测结果,利用支持向量机模型对基于损伤力学的疲劳寿命预测结果的误差进行训练,从而修正数值预测结果。通过将损伤力学有限元的预测结果、支持向量机模型修正后的预测结果与实验结果进行对比,发现采用支持向量机模型修正后的预测结果的精度较高,验证了所提方法的适用性,为2014-T6铝合金疲劳寿命预测提供了一个有效的解决方案,有望在实际工程应用中发挥重要作用。

本文引用格式

高同州 , 贺小帆 , 王晓雷 , 李紫光 , 朱振涛 , 詹志新 . 基于CDM理论与SVM模型的2014-T6铝合金疲劳寿命预测[J]. 航空学报, 2024 , 45(7) : 228952 -228952 . DOI: 10.7527/S1000-6893.2023.28952

Abstract

Based on the Continuous Damage Mechanics (CDM) theory and Support Vector Machine (SVM) model, a novel fatigue life prediction method has been developed to improve the accuracy of fatigue life prediction for 2014-T6 aluminum alloy materials. Firstly, by adopting the continuous damage mechanics model and the secondary development of the Abaqus-based UMAT subroutine, a damage mechanics finite element numerical implementation method for predicting the fatigue life of 2014-T6 aluminum alloy is established, and a calibration method for material parameters based on the particle swarm optimization algorithm is proposed. Subsequently, to further optimize the prediction results, the SVM model is employed to train the errors of fatigue life prediction results based on damage mechanics, thereby correcting the numerical prediction results. By comparing the prediction results of damage mechanics finite element, the SVM model-corrected prediction results, and experimental results, it is found that the accuracy of the SVM model-corrected prediction results is higher, verifying the applicability of the proposed method. This provides an effective solution for the fatigue life prediction of 2014-T6 aluminum alloy and is expected to play a significant role in practical engineering applications.

参考文献

1 ZHANG X S, MA Y E, YANG M, et al. A review of in-plane biaxial fatigue behavior of metallic materials[J]. Theoretical and Applied Fracture Mechanics2023123: 103726.
2 WU K L, LI B, GUO J J. Fatigue crack growth and fracture of internal fixation materials in environments-a review[J]. Materials202114(1): 176.
3 MA Y F, GUO Z Z, WANG L, et al. Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage[J]. Journal of Structural Engineering2020146(7): 04020117.
4 孙侠生, 苏少普, 孙汉斌, 等. 国外航空疲劳研究现状及展望[J]. 航空学报202142(5): 524791.
  SUN X S, SU S P, SUN H B, et al. Current status and prospect of overseas research on aeronautical fatigue[J]. Acta Aeronautica et Astronautica Sinica202142(5): 524791 (in Chinese).
5 GREITEMEIER D, DALLE DONNE C, SYASSEN F, et al. Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V[J]. Materials Science and Technology201632(7): 629-634.
6 WAN H Y, CHEN G F, LI C P, et al. Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens[J]. Journal of Materials Science & Technology201935(6): 1137-1146.
7 YE W L, ZHU S P, NIU X P, et al. Fatigue life prediction of notched components under size effect using stress gradient-based approach[J]. International Journal of Fracture2022234(1): 249-261.
8 JIANG L K, LIU W C, WU G H, et al. Effect of chemical composition on the microstructure, tensile properties and fatigue behavior of sand-cast Mg-Gd-Y-Zr alloy[J]. Materials Science and Engineering: A2014612: 293-301.
9 NADOT Y. Fatigue from defect: Influence of size, type, position, morphology and loading[J]. International Journal of Fatigue2022154: 106531.
10 XIAO G J, CHEN B Q, LI S C, et al. Fatigue life analysis of aero-engine blades for abrasive belt grinding considering residual stress[J]. Engineering Failure Analysis2022131: 105846.
11 ZHAO B F, SONG J X, XIE L Y, et al. Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach[J]. Scientific Reports202111: 19279.
12 ZHU S P, AI Y, LIAO D, et al. Recent advances on size effect in metal fatigue under defects: A review[J]. International Journal of Fracture2022234(1-2): 21-43.
13 ZHANG W J, HU Y Y, MA X F, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling[J]. International Journal of Fatigue2021145: 106109.
14 PENG X, WU S C, QIAN W J, et al. The potency of defects on fatigue of additively manufactured metals[J]. International Journal of Mechanical Sciences2022221: 107185.
15 WU Z K, WU S C, BAO J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue2021151: 106317.
16 QIAN W J, WU S C, WU Z K, et al. X-ray imaging of fatigue crack growth from multiple defects in additively manufactured AlSi10Mg alloy[J]. International Journal of Fatigue2022155: 106616.
17 CHIOCCA A, FRENDO F, AIELLO F, et al. Influence of residual stresses on the fatigue life of welded joints: Numerical simulation and experimental tests[J]. International Journal of Fatigue2022162: 106901.
18 BASQUIN O. The exponential law of endurance tests[J]. American Society for Testing and Materials Proceedings191010: 625-630.
19 COFFN L F. A study of the effects of cyclic thermal stresses on aductile metal[J]. Transactions of the ASME195476:931-950.
20 MANSON S S. Behavior of materials under conditions of thermal stress[R].Washington,D.C.: NACA,1953.
21 MA M Z, LIU X T, YU X G, et al. Fatigue life prediction for notched specimen considering modified critical plane method[J]. Fatigue & Fracture of Engineering Materials & Structures202346(3): 1031-1044.
22 OU C Y, VOOTHALURU R, LIU C R. Fatigue crack initiation of metals fabricated by additive manufacturing—A crystal plasticity energy-based approach to IN718 life prediction[J]. Crystals202010(10): 905.
23 GOLAHMAR A, NIORDSON C F, MARTíNEZ-PA?EDA E. A phase field model for high-cycle fatigue: Total-life analysis[J]. International Journal of Fatigue2023170: 107558.
24 SHERIDAN L, GOCKEL J E, SCOTT-EMUAKPOR O E. Stress-defect-life interactions of fatigued additively manufactured alloy 718[J]. International Journal of Fatigue2021143: 106033.
25 于宜冰,贺自强,贺小帆, 等. 基于损伤力学的轴承钢旋弯疲劳寿命预测[J/OL].北京航空航天大学学报:1-14[2023-04-24].DOI:10.13700/j.bh.1001-5965.2022.0639 .
  YU Y B, HE Z Q, HE X F, et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J/OL]. Journal of Beijing University of Aeronautics and Astronautic:1-14[2023-04-24].DOI:10.13700/j.bh.1001-5965.2022.0639 (in Chinese).
26 GAO T Z, TONG Y, ZHAN Z X, et al. Development of a non-local approach for life prediction of notched specimen considering stress/strain gradient and elastic-plastic fatigue damage[J]. International Journal of Damage Mechanics202231(7): 1057-1081.
27 梅威威, 胡伟平, 高同州, 等. 考虑孔洞影响的铸造镁合金ZM6疲劳寿命预估方法[J]. 固体力学学报202243(5): 585-602.
  MEI W W, HU W P, GAO T Z, et al. Study on fatigue life prediction method for casting magnesium alloy ZM6 considering the effect of internal pores[J]. Chinese Journal of Solid Mechanics202243(5): 585-602 (in Chinese).
28 ZHAN Z X, HU W P, MENG Q C. Data-driven fatigue life prediction in additive manufactured titanium alloy: A damage mechanics based machine learning framework[J]. Engineering Fracture Mechanics2021252: 107850.
29 MURAKAMI S. Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture[M]. Berlin: Springer, 2012.
30 XIAO Y C, LI S, GAO Z. A continuum damage mechanics model for high cycle fatigue[J]. International Journal of Fatigue199820(7): 503-508.
31 U.S. Department of Defense. Military handbook: Metallic materials and elements for aerospace vehicle structures[R]. Washington, D.C.: U.S. Department of Defense, 1990.
32 LAZAN B, BLATHERWICK A A. Fatigue properties of aluminum alloys at various direct-stress ratios. part 1. Rolled alloys [R]. Minneapolis :Minnesota Institute of Technologies, 1952.
文章导航

/