综述

高速飞行器减阻降热流动控制技术研究进展及工程应用

  • 朱广生 ,
  • 姚世勇 ,
  • 段毅
展开
  • 1.中国运载火箭技术研究院,北京  100076
    2.中国运载火箭技术研究院 空间物理重点实验室,北京  100076
.E-mail: duanyeebj@163.com

收稿日期: 2023-05-23

  修回日期: 2023-05-26

  录用日期: 2023-06-06

  网络出版日期: 2023-06-06

基金资助

国家自然科学基金(U21B6003)

Research progress and engineering application of flow control technology for drag and heat reduction of high-speed vehicles

  • Guangsheng ZHU ,
  • Shiyong YAO ,
  • Yi DUAN
Expand
  • 1.China Academy of Launch Vehicle Technology,Beijing  100076,China
    2.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing  100076,China
E-mail: duanyeebj@163.com

Received date: 2023-05-23

  Revised date: 2023-05-26

  Accepted date: 2023-06-06

  Online published: 2023-06-06

Supported by

National Natural Science Foundation of China(U21B6003)

摘要

减阻和降热是高速飞行器设计面临的2个核心问题。减阻可提高升阻比,减少飞行器燃料消耗;降热可减轻热防护系统重量,提升飞行器有效载荷。减阻降热是提高飞行器精细化设计,增强飞行器性能的关键技术。从高速飞行器减阻降热的工程需求出发,重点对激波、边界层的减阻降热流动控制技术的研究现状进行了回顾,并指出了其在工程应用中存在的问题与后续应重点关注的方向,以期实现飞行器主动流动控制的工程化应用,提升飞行器性能。

本文引用格式

朱广生 , 姚世勇 , 段毅 . 高速飞行器减阻降热流动控制技术研究进展及工程应用[J]. 航空学报, 2023 , 44(15) : 529049 -529049 . DOI: 10.7527/S1000-6893.2023.29049

Abstract

Drag and heat reductions are two core issues in the design of high-speed flight vehicles. Drag reduction can enhance the lift-drag ratio of vehicles and decrease the fuel consumption, while heat reduction can reduce the weight of thermal protection system and promote the effective load of flight vehicles. Drag and heat reductions are the key technologies to improve the fine design and enhance the flight performance. This paper mainly reviews the research status of flow control technology for drag and heat reductions of shock wave and boundary layer, from the perspective of the engineering requirements for drag and heat reductions of high-speed flight vehicles. This paper also points out the existing problems in engineering application and the direction that should be paid close attention to in the future, to realize the engineering application of active flow control of flight vehicles and improve the flight performance.

参考文献

1 STALDER J R, NIELSEN H V. Heat transfer from a hemisphere-cylinder equipped with flow-separation spikes: NACA-TN-3287[R]. Washington, D.C.: NASA, 1954.
2 AHMED M Y M, QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences201147(6): 425-449.
3 WANG Z G, SUN X W, HUANG W, et al. Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey[J]. Acta Astronautica2016129: 95-110.
4 SUN X W, HUANG W, OU M, et al. A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows[J]. Chinese Journal of Aeronautics201932(4): 771-784.
5 HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: A review[J]. Progress in Aerospace Sciences2019105: 31-39.
6 KARIMI M S, OBOODI M J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows[J]. Heat and Mass Transfer201955(2): 547-569.
7 RASHID S, NAWAZ F, MAQSOOD A, et al. Review of wave drag reduction techniques: Advances in active, passive, and hybrid flow control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022236(14): 2851-2884.
8 张涵信, 黄洁, 高树椿. 带尖针杆的钝体粘性绕流的数值模拟[J]. 航空学报199415(5): 519-525.
  ZHANG H X, HUANG J, GAO S C. Numerical simulation of hypersonic flow over axisymmetric spiked body[J]. Acta Aeronautica et Astronautica Sinica199415(5): 519-525 (in Chinese).
9 陆海波. 迎风凹腔与逆向喷流组合强化防热结构复杂流场和传热特性研究[D]. 长沙: 国防科学技术大学, 2012.
  LU H B. Research on complicated flow field and heat transfer characteristic of forward-facing cavity combined with opposing jet fortified thermal protection configuration[D]. Changsha: National University of Defense Technology, 2012 (in Chinese).
10 SARAVANAN S, JAGADEESH G, REDDY K P J. Investigation of missile-shaped body with forward-facing cavity at Mach 8[J]. Journal of Spacecraft and Rockets200946(3): 577-591.
11 BURBANK P B, STALLINGS R L. Heat-transfer and pressure measurements on a flat-face cylinder at a mach number range of 2.49 to 4.44: NASA TM X-19[R]. Washington, D.C.: NASA, 1959.
12 张杰, 肖锋, 黄伟, 等. 迎风凹腔及其组合体减阻防热技术研究进展[J]. 航空兵器202128(4): 16-23.
  ZHANG J, XIAO F, HUANG W, et al. A survey of drag and heat reduction induced by forward-facing cavity and its combinations[J]. Aero Weaponry202128(4): 16-23 (in Chinese).
13 YADAV R, GUVEN U. Aerothermodynamics of a hypersonic vehicle with a forward-facing parabolic cavity at nose[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014228(10): 1863-1874.
14 YADAV R, GUVEN U. Aerodynamic heating of a hypersonic projectile with forward-facing ellipsoid cavity at nose[J]. Journal of Spacecraft and Rockets201552(1): 157-165.
15 SEILER F, SRULIJES J, GIMENEZ PASTOR M, et al. Heat fluxes inside a cavity placed at the nose of a projectile measured in a shock tunnel at Mach 4.5[C]∥New Results in Numerical and Experimental Fluid Mechanics VI. Berlin: Springer, 2007: 309-316.
16 SILTON S I, GOLDSTEIN D B. Use of an axial nose-tip cavity for delaying ablation onset in hypersonic flow[J]. Journal of Fluid Mechanics2005528: 297-321.
17 陆海波, 刘伟强. 高超声速飞行器鼻锥迎风凹腔结构防热效能研究[J]. 宇航学报201233(8): 1013-1018.
  LU H B, LIU W Q. Investigation on thermal protection efficiency of hypersonic vehicle nose with forward-facing cavity[J]. Journal of Astronautics201233(8): 1013-1018 (in Chinese).
18 LOPATOFF M. Wind-flow study of pressure-drag reduction at transonic speed by projecting a jet of air from the nose of a prolate spheroid of fineness ratio 6: NACA-RM-L51E09[R]. Washington, D.C.: NASA, 1951.
19 WARREN C H E. An experimental investigation of the effect of ejecting a coolant gas at the nose of a bluff body[J]. Journal of Fluid Mechanics19608(3): 400.
20 IMOTO T, OKABE H, TANI Y. Enhancement of aerodynamic heating reduction in high enthalpy flows with opposing jet[C]∥ Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
21 KIM Y, ROH T S, HUH H, et al. Study on the combined effect of various injection conditions on the drag reduction by a counter-flow jet in supersonic flow[J]. Aerospace Science and Technology202098: 105580.
22 HAYASHI K, ASO S. Effect of pressure ratio on aerodynamic heating reduction due to opposing jet[C]∥ Proceedings of the 36th AIAA Thermophysics Conference. Reston: AIAA, 2003.
23 CHEN L W, WANG G L, LU X Y. Numerical investigation of a jet from a blunt body opposing a supersonic flow[J]. Journal of Fluid Mechanics2011684: 85-110.
24 LI S B, WANG Z G, HUANG W, et al. Effect of the injector configuration for opposing jet on the drag and heat reduction[J]. Aerospace Science and Technology201651: 78-86.
25 SRIRAM R, JAGADEESH G. Film cooling at hypersonic Mach numbers using forward facing array of micro-jets[J]. International Journal of Heat and Mass Transfer200952(15-16): 3654-3664.
26 BARZEGAR GERDROODBARY M, IMANI M, GANJI D D. Investigation of film cooling on nose cone by a forward facing array of micro-jets in hypersonic flow[J]. International Communications in Heat and Mass Transfer201564: 42-49.
27 TAMADA I, ASO S, TANI Y. Numerical study of the effect of the opposing jet on reduction of aerodynamic heating with different nose configurations[C]∥26th International Congress of the Aeronautical Sciences, Anchorage. 2008.
28 HAYASHI K, ASO S, TANI Y. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. Journal of Spacecraft and Rockets200643(1): 233-235.
29 ZHOU C Y, JI W Y. A three-dimensional numerical investigation on drag reduction of a supersonic spherical body with an opposing jet[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014228(2): 163-177.
30 HAYASHI K, ASO S. A study on reduction of aerodynamic heating by opposing jet in supersonic flow[J]. Journal of the Japan Society for Aeronautical and Space Sciences200452(600): 38-44.
31 邓帆, 谢峰, 黄伟, 等. 逆向喷流技术在高超声速飞行器上的应用[J]. 空气动力学学报201735(4): 485-495.
  DENG F, XIE F, HUANG W, et al. Applications of counterflowing jet technology in hypersonic vehicle[J]. Acta Aerodynamica Sinica201735(4): 485-495 (in Chinese).
32 高广宇, 刘冰, 黄伟, 等. 高超声速飞行器逆向射流减阻防热技术综述[J]. 战术导弹技术2021(4): 67-75.
  GAO G Y, LIU B, HUANG W, et al. Review of opposing jet drag reduction and thermal protection technology for hypersonic vehicle[J]. Tactical Missile Technology2021(4): 67-75 (in Chinese).
33 孙宗祥. 等离子体减阻技术的研究进展[J]. 力学进展200333(1): 87-94.
  SUN Z X. Progress in plasma assisted drag reduction technology[J]. Advances in Mechanics200333(1): 87-94 (in Chinese).
34 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报201536(2): 381-405.
  WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica201536(2): 381-405 (in Chinese).
35 罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报201735(2): 252-264.
  LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica201735(2): 252-264 (in Chinese).
36 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报202243(3): 025027.
  ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica202243(3): 025027 (in Chinese).
37 马正雪, 罗振兵, 赵爱红, 等. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报202243(S2): 727747.
  MA Z X, LUO Z B, ZHAO A H, et al. Reverse jet characteristics of plasma synthetic jet in hypersonic flow field[J]. Acta Aeronautica et Astronautica Sinica202243(S2): 727747 (in Chinese).
38 陈加政, 胡国暾, 樊国超, 等. 等离子体合成射流对钝头激波的控制与减阻[J]. 航空学报202142(7): 124773.
  CHEN J Z, HU G, FAN G C, et al. Bow shock wave control and drag reduction by plasma synthetic jet[J]. Acta Aeronautica et Astronautica Sinica202142(7): 124773 (in Chinese).
39 张旭东, 李铮, 董昊, 等. 高超声速流场等离子体逆向喷流减阻特性[J]. 航空学报202243(S2): 727727.
  ZHANG X D, LI Z, DONG H, et al. Drag reduction characteristics of opposing plasma synthetic jet in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica202243(S2): 727727 (in Chinese).
40 MORTAZAVI M, KNIGHT D D, AZAROVA O A, et al. Numerical simulation of energy deposition in a supersonic flow past a hemisphere[C]∥52nd Aerospace Sciences Meeting. Reston AIAA, 2014.
41 MILLER D S, CARLSON H W. Application of heat and force fields to sonic-boom minimization[J]. Journal of Aircraft19718(8): 657-662.
42 MYRABO L. Solar-powered global aerospace transportation[C]∥ Proceedings of the 13th International Electric Propulsion Conference. Reston: AIAA, 1978.
43 韩路阳, 王斌, 蒲亮, 等. 能量沉积减阻技术机理及相关问题研究进展[J]. 航空学报202243(9): 026032.
  HAN L Y, WANG B, PU L, et al. Research progress on mechanism and related problems of energy deposition drag reduction technology[J]. Acta Aeronautica et Astronautica Sinica202243(9): 026032 (in Chinese).
44 王殿恺, 石继林, 卿泽旭. 纳秒脉冲激光能量沉积激波减阻机理数值研究[J]. 红外与激光工程202150(3): 20200253.
  WANG D K, SHI J L, QING Z X. Numerical study of shock wave drag reduction mechanism by nanosecond-pulse laser energy deposition[J]. Infrared and Laser Engineering202150(3): 20200253 (in Chinese).
45 方娟, 洪延姬, 李倩, 等. 高重复频率激光能量沉积减小超声速波阻的数值研究[J]. 强激光与粒子束201123(5): 1158-1162.
  FANG J, HONG Y J, LI Q, et al. Numerical analysis of supersonic drag reduction with repetitive laser energy deposition[J]. High Power Laser and Particle Beams201123(5): 1158-1162 (in Chinese).
46 HUANG W, LIU J, XIA Z X. Drag reduction mechanism induced by a combinational opposing jet and spike concept in supersonic flows[J]. Acta Astronautica2015115: 24-31.
47 HUANG W. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J]. Journal of Zhejiang University-SCIENCE A201516(7): 551-561.
48 EGHLIMA Z, MANSOUR K. Drag reduction for the combination of spike and counterflow jet on blunt body at high Mach number flow[J]. Acta Astronautica2017133: 103-110.
49 OU M, YAN L, HUANG W, et al. Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows[J]. International Journal of Heat and Mass Transfer2018126: 10-31.
50 ZHU L, CHEN X, LI Y K, et al. Investigation of drag and heat reduction induced by a novel combinational lateral jet and spike concept in supersonic flows based on conjugate heat transfer approach[J]. Acta Astronautica2018142: 300-313.
51 HUANG J, YAO W X. Active flow control by a novel combinational active thermal protection for hypersonic vehicles[J]. Acta Astronautica2020170: 320-330.
52 ZHU L, LI Y K, GONG L K, et al. Coupled investigation on drag reduction and thermal protection mechanism induced by a novel combinational spike and multi-jet strategy in hypersonic flows[J]. International Journal of Heat and Mass Transfer2019131: 944-964.
53 MENG Y S, YAN L, HUANG W, et al. Coupled investigation on drag reduction and thermal protection mechanism of a double-cone missile by the combined spike and multi-jet[J]. Aerospace Science and Technology2021115: 106840.
54 KIM J H, MATSUDA A, SAKAI T, et al. Wave drag reduction with acting spike induced by laser-pulse energy depositions[J]. AIAA Journal201149(9): 2076-2078.
55 SUN X W, GUO Z Y, HUANG W, et al. Drag and heat reduction mechanism induced by a combinational novel cavity and counterflowing jet concept in hypersonic flows[J]. Acta Astronautica2016126: 109-119.
56 SUN X W, GUO Z Y, HUANG W, et al. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows[J]. Acta Astronautica2017131: 204-225.
57 BAZYMA L A, RASHKOVAN V M. Stabilization of blunt nose cavity flows by using energy deposition[J]. Journal of Spacecraft and Rockets200542(5): 790-794.
58 王得强, 许晨豪, 蒋崇文, 等. 高超声速流动控制技术研究进展[J]. 飞航导弹2015(9): 24-30.
  WANG D Q, XU C H, JIANG C W, et al. Research progress of hypersonic flow control technology[J]. Aerodynamic Missile Journal2015(9): 24-30 (in Chinese).
59 张益荣, 张毅锋, 解静, 等. 典型高超声速翼身组合体粘性干扰效应模型研究[J]. 空气动力学学报201735(2): 186-191.
  ZHANG Y R, ZHANG Y F, XIE J, et al. Study of viscous interaction effect model for typical hypersonic wing-body figuration[J]. Acta Aerodynamica Sinica201735(2): 186-191 (in Chinese).
60 段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报202038(2): 391-403.
  DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonicboundary laye rtransition[J]. Acta Aerodynamica Sinica202038(2): 391-403 (in Chinese).
61 FANG Y C, LIOU W W, XU S X. Skin friction prediction for high-speed turbulent boundary layers with ablation[J]. Journal of Spacecraft and Rockets200441(5): 893-895.
62 HEFNER J N, BUSHNELL D. Viscous drag reduction via surface mass injection[M]∥Viscous Drag Reduction in Boundary Layers. 1990.
63 HWANG D P. Skin-friction reduction by a micro-blowing technique[J]. AIAA Journal199836: 480-481.
64 HWANG D P. Review of research into the concept of the microblowing technique for turbulent skin friction reduction[J]. Progress in Aerospace Sciences200440(8): 559-575.
65 BATHEL B, DANEHY P, INMAN J, et al. PLIF visualization of active control of hypersonic boundary layers using blowing[C]∥26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2008.
66 ORLIK E, FEDIOUN I, LARDJANE N. Hypersonic boundary-layer transition forced by wall injection: A numerical study[J]. Journal of Spacecraft and Rockets201451(4): 1306-1318.
67 CHEN Z, YU C P, LI L, et al. Effect of uniform blowing or suction on hypersonic spatially developing turbulent boundary layers[J]. Science China Physics, Mechanics & Astronomy, 201659(6): 664702.
68 CERMINARA A, DEITERDING R, SANDHAM N. Direct numerical simulation of blowing in a hypersonic boundary layer on a flat plate with slots[C]∥2018 Fluid Dynamics Conference. Reston: AIAA, 2018.
69 ZHANG Y, LIU Y, ZHANG Y, et al. Hypersonic boundary layer flow and heat transfer analysis of compressible fluid over a permeable wall with gas injection[J]. International Communications in Heat and Mass Transfer2021129: 105688.
70 MARCHENAY Y, OLAZABAL LOUMé M, CHEDE VERGNE F. Hypersonic turbulent flow reynolds-averaged navier-stokes simulations with roughness and blowing effects[J]. Journal of Spacecraft and Rockets202259(5): 1686-1696.
71 MO F, SU W, GAO Z X, et al. Numerical investigations of the slot blowing technique on the hypersonic vehicle for drag reduction[J]. Aerospace Science and Technology2022121: 107372.
72 LEYVA I, JEWELL J, LAURENCE S, et al. On the impact of injection schemes on transition in hypersonic boundary layers[C]∥16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2009.
73 JEWELL J S, LEYVA I A, PARZIALE N J, et al. Effect of gas injection on transition in hypervelocity boundary layers[C]∥28th International Symposium on Shock Waves. Berlin: Springer, 2012: 735-740.
74 LI F, CHOUDHARI M, CHANG C L, et al. Effects of injection on the instability of boundary layers over hypersonic configurations[J]. Physics of Fluids201325(10): 104107.
75 SCHNEIDER S P. Hypersonic boundary-layer transition with ablation and blowing[J]. Journal of Spacecraft and Rockets201047(2): 225-237.
76 SCHMISSEUR J D. Hypersonics into the 21st century: A perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences201572: 3-16.
77 LEYVA I, LAURENCE S, BEIERHOLM A, et al. Transition delay in hypervelocity boundary layers by means of CO2/acoustic instability interactions[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
78 JEWELL J, WAGNILD R, LEYVA I, et al. Transition within a hypervelocity boundary layer on a 5-degree half-angle cone in air/CO2 mixtures[C]∥51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
79 GHAFFARI S, MARXEN O, IACCARINO G, et al. Numerical simulations of hypersonic boundary-layer instability with wall blowing[C]∥48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
80 JOHNSON H, GRONVALL J, CANDLER G. Reacting hypersonic boundary layer stability with blowing and suction[C]∥47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
81 MIRó MIRó F, PINNA F. Injection-gas-composition effects on hypersonic boundary-layer transition[J]. Journal of Fluid Mechanics2020890: R4.
82 MIRó MIRó F, DEHAIRS P, PINNA F, et al. Effect of wall blowing on hypersonic boundary-layer transition[J]. AIAA Journal201957(4): 1567-1578.
83 FEDOROV A V, SOUDAKOV V, LEYVA I A. Stability analysis of high-speed boundary-layer flow with gas injection[C]∥7th AIAA Theoretical Fluid Mechanics Conference. Reston: AIAA, 2014.
84 GOYNE C P, STALKER R J, PAULL A, et al. Hypervelocity skin-friction reduction by boundary-layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets200037(6): 740-746.
85 STALKER R J. Control of hypersonic turbulent skin friction by boundary- layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets200542(4): 577-587.
86 SURAWEERA M, MEE D, STALKER R. Skin friction reduction in hypersonic turbulent flow by boundary layer combustion[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
87 BARTH J E, WHEATLEY V, SMART M K. Hypersonic turbulent boundary-layer fuel injection and combustion: skin-friction reduction mechanisms[J]. AIAA Journal201351(9): 2147-2157.
88 刘宏鹏, 高振勋, 蒋崇文, 等. 可压缩湍流边界层燃烧减阻研究综述[J]. 空气动力学学报202038(3): 593-602.
  LIU H P, GAO Z X, JIANG C W, et al. Review of researches on compressible turbulent boundary layer combustion for skin friction reduction[J]. Acta Aerodynamica Sinica202038(3): 593-602 (in Chinese).
89 郑星, 冯黎明, 张云天, 等. 超声速边界层燃烧减阻技术研究进展[J]. 固体火箭技术202144(4): 438-447.
  ZHENG X, FENG L M, ZHANG Y T, et al. Review of supersonic boundary layer combustion for skin friction drag reduction technology[J]. Journal of Solid Rocket Technology202144(4): 438-447 (in Chinese).
90 王帅, 何国强, 秦飞, 等. 超声速内流道摩擦阻力分析及减阻技术研究[J]. 航空动力学报201934(4): 908-919.
  WANG S, HE G Q, QIN F, et al. Research on skin-friction drag and drag reduction technics in a supersonic inner flow path[J]. Journal of Aerospace Power201934(4): 908-919 (in Chinese).
91 ZHANG P, XU J L, YU Y, et al. Effect of adverse pressure gradient on supersonic compressible boundary layer combustion[J]. Aerospace Science and Technology201988: 380-394.
92 ZHANG P, XU J L, CUI W. Numerical study of supersonic turbulent boundary layer combustion with pressure gradient[J]. Aerospace Science and Technology2020107: 106246.
93 SHINE S R, NIDHI S S. Review on film cooling of liquid rocket engines[J]. Propulsion and Power Research20187(1): 1-18.
94 MODLIN J M, COLWELL G T. Surface cooling of scramjet engine inlets using heat pipe, transpiration, and film cooling[J]. Journal of Thermophysics and Heat Transfer19926(3): 500-504.
95 OLSEN G, NOWAK R, HOLDEN M, et al. Experimental results for film cooling in 2-D supersonic flow including coolant delivery pressure, geometry, and incident shock effects[C]∥28th Aerospace Sciences Meeting. Reston: AIAA, 1990.
96 HAN Q X, HE X M, TAN H Y. Experimental study on film-cooling with supersonic injection[J]. Journal of Nanjing University of Aeronautics and Astronautics199830(5): 491-495.
97 SAHOO N, KULKARNI V, SARAVANAN S, et al. Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed[J]. Physics of Fluids200517(3): 036102.
98 ZHANG J Z, ZHANG S C, WANG C H, et al. Recent advances in film cooling enhancement: A review[J]. Chinese Journal of Aeronautics202033(4): 1119-1136.
99 KELLER M A, KLOKER M J, OLIVIER H. Influence of cooling-gas properties on film-cooling effectiveness in supersonic flow[J]. Journal of Spacecraft and Rockets201552(5): 1443-1455.
100 ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences2020119: 100646.
101 向树红, 商圣飞, 沈自才, 等. 高超声速气膜冷却技术研究进展及发展方向[J]. 宇航材料工艺202050(3): 1-10.
  XIANG S H, SHANG S F, SHEN Z C, et al. Research progress and development direction of hypersonic film cooling technology[J]. Aerospace Materials & Technology202050(3): 1-10 (in Chinese).
102 IFTI H S, HERMANN T, MCGILVRAY M, et al. Numerical simulation of transpiration cooling in a laminar hypersonic boundary layer[J]. Journal of Spacecraft and Rockets202259(5): 1726-1735.
103 VAN FOREEST A, SIPPEL M, GüLHAN A, et al. Transpiration cooling using liquid water[J]. Journal of Thermophysics and Heat Transfer200923(4): 693-702.
104 HOLDEN M, RODRIGUEZ K, VA J. An experimental study of transpiration cooling on the distribution of heat transfer and skin friction to a sharp slender cone at Mach 11 and 13[C]∥ 28th Aerospace Sciences Meeting. Reston: AIAA, 1990.
105 CAMILLO G P, WAGNER A, DITTERT C, et al. Experimental investigation of the effect of transpiration cooling on second mode instabilities in a hypersonic boundary layer[J]. Experiments in Fluids202061: 162.
106 SU H, WANG J H, HE F, et al. Numerical investigation on transpiration cooling with coolant phase change under hypersonic conditions[J]. International Journal of Heat and Mass Transfer2019129: 480-490.
107 B?HRK H. Transpiration-cooling with porous ceramic composites in hypersonic flow: STO-EN-AVT-261, 5-1-5-26[R].
108 沈斌贤, 曾磊, 刘骁, 等. 高超声速飞行器主动质量引射热防护技术研究进展[J]. 空气动力学学报202240(6): 1-13.
  SHEN B X, ZENG L, LIU X, et al. Research progress of thermal protection technique by activemass injection for hypersonic vehicle[J]. Acta Aerodynamica Sinica202240(6): 1-13 (in Chinese).
文章导航

/