多尺度结构拓扑优化设计方法综述
收稿日期: 2023-04-13
修回日期: 2023-04-28
录用日期: 2023-05-24
网络出版日期: 2023-06-06
基金资助
国家杰出青年科学基金(11725211);空天前沿培育项目(KY0505072113);湖南省研究生科研创新项目(CX20220021)
A review of topology optimization design methods for multi-scale structures
Received date: 2023-04-13
Revised date: 2023-04-28
Accepted date: 2023-05-24
Online published: 2023-06-06
Supported by
National Science Fund for Distinguished Young Scholars(11725211);Aerospace Frontier Inspiration Project(KY0505072113);Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220021)
多尺度结构是下一代结构轻量化的核心方向之一,在航空航天领域有巨大的发展潜力和应用价值。面向多尺度结构的拓扑优化技术得到了广泛研究,取得了长足的进步和诸多成果,但将其应用于实际工程仍有不少挑战和难题。首先介绍了单尺度结构拓扑优化的主流方法和特点、均匀化方法的基本思想和特殊地位、多尺度结构拓扑优化方法和单尺度结构拓扑优化方法的关系。然后以结构分布特征作为分类标准,系统地梳理了周期、功能梯度和异构3种分布形式的多尺度结构的拓扑优化设计方法。接着针对多尺度结构拓扑优化中的结构连通性、多尺度方法适用性和机器学习技术的应用等重要问题的相关研究进展进行了综述和讨论。最后对领域亟待突破的问题及重要研究方向进行了总结和展望。
陈小前 , 赵勇 , 霍森林 , 张泽雨 , 都柄晓 . 多尺度结构拓扑优化设计方法综述[J]. 航空学报, 2023 , 44(15) : 528863 -528863 . DOI: 10.7527/S1000-6893.2023.28863
Multi-scale structure is one of the important directions of next-generation structural lightweighting and has great potential and strategic value for application in the aerospace field. Topology optimization techniques for multi-scale structures have also been extensively researched, leading to great progress and achievements. However, many challenges and difficulties remain before realizing actual engineering practice. This paper firstly introduces the mainstream methods and characteristics of single-scale structural topology optimization, the basic idea and special position of homogenization methods, as well as the relationship between topology optimization methods for multi-scale structures and topology optimization methods for single-scale structures. Then, using the structural distribution characteristics as the classification criteria, this paper systematically sorted out the topology optimization design methods for three distribution forms of multi-scale structures: periodic, functional gradient and heterogeneous. For the important issues, including structural connectivity, applicability of multi-scale methods, and application of machine learning technology in multi-scale structural topology optimization, relevant research progresses are reviewed and discussed. Finally, pressing challenges and important research directions in the field are summarized and prospected.
1 | AIZENBERG J, WEAVER J C, THANAWALA M S, et al. Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale[J]. Science, 2005, 309(5732): 275-278. |
2 | LAKES R. Materials with structural hierarchy[J]. Nature, 1993, 361(6412): 511-515. |
3 | GIBSON L J, ASHBY M F. Cellular solids: structure and properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1997: 2-3. |
4 | PLOCHER J, PANESAR A. Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures[J]. Materials & Design, 2019, 183: 108164. |
5 | BENDS?E M, SIGMUND O. Topology optimization: Theory, methods, and applications[M]. Berlin: Springer Science & Business Media, 2004: 1-2. |
6 | CHENG K T, OLHOFF N. An investigation concerning optimal design of solid elastic plates[J]. International Journal of Solids and Structures, 1981, 17(3): 305-323. |
7 | BENDS?E M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
8 | ORME M E, GSCHWEITL M, FERRARI M, et al. Additive manufacturing of lightweight, optimized, metallic components suitable for space flight[J]. Journal of Spacecraft and Rockets, 2017, 54(5): 1050-1059. |
9 | AAGE N, ANDREASSEN E, LAZAROV B S, et al. Giga-voxel computational morphogenesis for structural design[J]. Nature, 2017, 550(7674): 84-86. |
10 | MENG L, ZHANG W H, QUAN D L, et al. From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap[J]. Archives of Computational Methods in Engineering, 2019, 27(3): 805-830. |
11 | TOMLIN M, MEYER J. Topology optimization of an additive layer manufactured (ALM) aerospace part[C]∥ Proceeding of the 7th Altair CAE Technology Conference. 2011: 1-9. |
12 | XU H, ZHAO Y, YAO W, et al. Multi-objective structural optimization and design of microsatellite supporting legs[C]∥ World Congress of Structural and Multidisciplinary Optimisation. Cham: Springer, 2018: 1273-1282. |
13 | SENHORA F V, SANDERS E D, PAULINO G H. Optimally-tailored spinodal architected materials for multiscale design and manufacturing[J]. Advanced Materials, 2022, 34(26): 2109304. |
14 | WANG C, ZHU J H, WU M Q, et al. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components[J]. Chinese Journal of Aeronautics, 2021, 34(5): 386-398. |
15 | JIA Z A, LIU F, JIANG X H, et al. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality[J]. Journal of Applied Physics, 2020, 127(15): 150901. |
16 | YUAN X J, CHEN M J, YAO Y, et al. Recent progress in the design and fabrication of multifunctional structures based on metamaterials[J]. Current Opinion in Solid State and Materials Science, 2021, 25(1): 100883. |
17 | SALEH B, JIANG J H, FATHI R, et al. 30 years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges[J]. Composites Part B: Engineering, 2020, 201: 108376. |
18 | BENDSOE M P, GUEDES J M, HABER R B, et al. An analytical model to predict optimal material properties in the context of optimal structural design[J]. Journal of Applied Mechanics, 1994, 61(4): 930-937. |
19 | FUJII D, CHEN B C, KIKUCHI N. Composite material design of two-dimensional structures using the homogenization design method[J]. International Journal for Numerical Methods in Engineering, 2001, 50(9): 2031-2051. |
20 | NEVES M M, SIGMUND O, BENDS?E M P. Topology optimization of periodic microstructures with a penalization of highly localized buckling modes[J]. International Journal for Numerical Methods in Engineering, 2002, 54(6): 809-834. |
21 | ROSEN D W. Computer-aided design for additive manufacturing of cellular structures[J]. Computer-Aided Design and Applications, 2007, 4(5): 585-594. |
22 | 钱令希. 工程结构优化设计[M]. 北京: 水利电力出版社, 1983: 1-2. |
QIAN L X. Optimal design of engineering structure[M]. Beijing: Water Resources and Electric Power Press, 1983: 1-2 (in Chinese). | |
23 | 罗云锋. 具有特定几何特征的增材制造结构拓扑优化设计方法[D]. 大连: 大连理工大学, 2021: 9-10. |
LUO Y F. Topology optimization of structures with specific geometric features for additive manufacturing[D]. Dalian: Dalian University of Technology, 2021: 9-10 (in Chinese). | |
24 | 高杰. 基于参数化水平集的结构/材料多尺度拓扑优化设计研究[D]. 武汉: 华中科技大学, 2019: 5-7. |
GAO J. Research on topology optimization for multiscale design of structure-material based on parametric level set[D]. Wuhan: Huazhong University of Science and Technology, 2019: 5-7 (in Chinese). | |
25 | 都柄晓. 基于移动可变形空腔的结构拓扑优化方法研究[D]. 长沙: 国防科技大学, 2019: 5-10. |
DU B X. Research on topology optimisation using moving morphable voids[D]. Changsha: National University of Defense Technology, 2019: 5-10 (in Chinese). | |
26 | 郭中泽, 张卫红, 陈裕泽. 结构拓扑优化设计综述[J]. 机械设计, 2007, 24(8): 1-6. |
GUO Z Z, ZHANG W H, CHEN Y Z. An overview on the topological optimization design of structures[J]. Journal of Machine Design, 2007, 24(8): 1-6 (in Chinese). | |
27 | 文桂林, 刘杰, 陈梓杰, 等. 非线性连续体拓扑优化方法综述[J]. 力学学报, 2022, 54(10): 2659-2675. |
WEN G L, LIU J, CHEN Z J, et al. A survey of nonlinear continuum topology optimization methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2659-2675 (in Chinese). | |
28 | 龙凯, 王选, 孙鹏文. 连续体结构拓扑优化方法及应用[M]. 北京: 中国水利水电出版社, 2022: 1-3. |
LONG K, WANG X, SUN P W. Topology optimization method of continuum structure and its application[M]. Beijing: China Water & Power Press, 2022: 1-3 (in Chinese). | |
29 | ZHOU M, ROZVANY G I N. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 309-336. |
30 | BENDS?E M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9): 635-654. |
31 | STOLPE M, SVANBERG K. On the trajectories of penalization methods for topology optimization[J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 128-139. |
32 | STOLPE M, SVANBERG K. An alternative interpolation scheme for minimum compliance topology optimization[J]. Structural and Multidisciplinary Optimization, 2001, 22(2): 116-124. |
33 | XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization[J]. Computers & Structures, 1993, 49(5): 885-896. |
34 | QUERIN O M, STEVEN G P, XIE Y M. Evolutionary structural optimisation (ESO) using a bidirectional algorithm[J]. Engineering Computations, 1998, 15(8): 1031-1048. |
35 | 杨德庆, 刘正兴, 隋允康. 连续体结构拓扑优化设计的ICM方法[J]. 上海交通大学学报, 1999, 33(6): 734-736. |
YANG D Q, LIU Z X, SUI Y K. ICM method for topology optimization design of continuum structures[J]. Journal of Shanghai Jiao Tong University, 1999, 33(6): 734-736 (in Chinese). | |
36 | WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227-246. |
37 | ALLAIRE G, JOUVE F, TOADER A M. A level-set method for shape optimization[J]. Comptes Rendus Mathematique, 2002, 334(12): 1125-1130. |
38 | ALLAIRE G, JOUVE F, TOADER A M. Structural optimization using sensitivity analysis and a level-set method[J]. Journal of Computational Physics, 2004, 194(1): 363-393. |
39 | WANG M Y, ZHOU S W. Phase field: A variational method for structural topology optimization[J]. Computer Modeling in Engineering and Sciences, 2004, 6(6): 547-566. |
40 | TAKEZAWA A, NISHIWAKI S, KITAMURA M. Shape and topology optimization based on the phase field method and sensitivity analysis[J]. Journal of Computational Physics, 2010, 229(7): 2697-2718. |
41 | GUO X, ZHANG W S, ZHONG W L. Doing topology optimization explicitly and geometrically—A new moving morphable components based framework[J]. Journal of Applied Mechanics, 2014, 81(8): 081009. |
42 | ZHANG W S, CHEN J S, ZHU X F, et al. Explicit three dimensional topology optimization via moving morphable void (MMV) approach[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 322: 590-614. |
43 | DU B X, YAO W, ZHAO Y, et al. A moving morphable voids approach for topology optimization with closed B-splines[J]. Journal of Mechanical Design, 2019, 141(8): 081401. |
44 | ZHOU Y, ZHANG W H, ZHU J H, et al. Feature-driven topology optimization method with signed distance function[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 1-32. |
45 | 张卫红, 周莹, 酒丽朋, 等. 特征驱动的结构拓扑优化方法[J]. 中国科学: 技术科学, 2019, 49(10): 1177-1185. |
ZHANG W H, ZHOU Y, JIU L P, et al. Feature-driven method for structural topology optimization[J]. Scientia Sinica (Technologica), 2019, 49(10): 1177-1185 (in Chinese). | |
46 | ZHANG W H, ZHOU Y, ZHU J H. A comprehensive study of feature definitions with solids and voids for topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 325: 289-313. |
47 | ESCHENAUER H A, KOBELEV V V, SCHUMACHER A. Bubble method for topology and shape optimization of structures[J]. Structural Optimization, 1994, 8(1): 42-51. |
48 | SIGMUND O, MAUTE K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055. |
49 | DEATON J D, GRANDHI R V. A survey of structural and multidisciplinary continuum topology optimization: post 2000[J]. Structural and Multidisciplinary Optimization, 2014, 49(1): 1-38. |
50 | VAN DIJK N P, MAUTE K, LANGELAAR M, et al. Level-set methods for structural topology optimization: A review[J]. Structural and Multidisciplinary Optimization, 2013, 48(3): 437-472. |
51 | MUNK D J, VIO G A, STEVEN G P. Topology and shape optimization methods using evolutionary algorithms: A review[J]. Structural and Multidisciplinary Optimization, 2015, 52(3): 613-631. |
52 | XIA L, XIA Q, HUANG X D, et al. Bi-directional evolutionary structural optimization on advanced structures and materials: A comprehensive review[J]. Archives of Computational Methods in Engineering, 2018, 25(2): 437-478. |
53 | WEIN F, DUNNING P D, NORATO J A. A review on feature-mapping methods for structural optimization[J]. Structural and Multidisciplinary Optimization, 2020, 62(4): 1597-1638. |
54 | PAVLIOTIS G A, STUART A M. Multiscale methods: Averaging and homogenization[M]. New York: Springer, 2008. |
55 | 杜善义, 王彪. 复合材料细观力学[M]. 北京: 科学出版社, 1998: 1-6. |
DU S Y, WANG B. Mesomechanics of composite materials[M]. Beijing: Science Press, 1998: 1-6 (in Chinese). | |
56 | 陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报, 2018, 39(1): 1-68. |
CHEN Y L, MA Y, PAN F, et al. Research progress in multi-scale mechanics of composite materials[J]. Chinese Journal of Solid Mechanics, 2018, 39(1): 1-68 (in Chinese). | |
57 | 江山. 多尺度有限元方法的一些研究及应用[D]. 湘潭: 湘潭大学, 2008: 1-6. |
JIANG S. Some studies and applications on the multiscale finite element method[D]. Xiangtan: Xiangtan University, 2008: 1-6 (in Chinese). | |
58 | 黄富华. 周期性复合材料有效性能的均匀化计算[D]. 哈尔滨: 哈尔滨工业大学, 2010: 3-18. |
HUANG F H. Homogenizated numeration of effective properties for composite material with periodicity[D]. Harbin: Harbin Institute of Technology, 2010: 3-18 (in Chinese). | |
59 | 吴敬凯. 非均质材料力学性能与失效分析的多尺度有限元法研究[D]. 大连: 大连理工大学, 2013: 3-11. |
WU J K. Study on multiscale finite element method for mechanical behavior and failure analyses of heterogeneous materials[D]. Dalian: Dalian University of Technology, 2013: 3-11 (in Chinese). | |
60 | BABU?KA I. Homogenization approach in engineering[C]∥ GLOWINSKI R, LIONS J L. Computing Methods in Applied Sciences and Engineering. Berlin: Springer, 1976: 137-153. |
61 | BENSOUSSAN A, LIONS J L, PAPANICOLAOU G. Asymptotic analysis for periodic structures[M]. Providence: American Mathematical Society, 1978: 1-20. |
62 | CIORANESCU D, SAINT JEAN PAULIN J. Homogenization in open sets with holes[J]. Journal of Mathematical Analysis and Applications, 1979, 71(2): 590-607. |
63 | OLEINIK O A. On homogenization problems[M]∥ Trends and Applications of Pure Mathematics to Mechanics. Berlin: Springer Berlin Heidelberg, 1984: 248-272. |
64 | GUEDES J, KIKUCHI N. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2): 143-198. |
65 | HASSANI B, HINTON E. A review of homogenization and topology optimization I—Homogenization theory for media with periodic structure[J]. Computers & Structures, 1998, 69(6): 707-717. |
66 | HASSANI B, HINTON E. A review of homogenization and topology opimization II—Analytical and numerical solution of homogenization equations[J]. Computers & Structures, 1998, 69(6): 719-738. |
67 | CHUNG P W, TAMMA K K, NAMBURU R R. Asymptotic expansion homogenization for heterogeneous media: Computational issues and applications[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(9): 1291-1301. |
68 | KALAMKAROV A L, ANDRIANOV I V, DANISHEVS’KYY V V. Asymptotic homogenization of composite materials and structures[J]. Applied Mechanics Reviews, 2009, 62(3): 669-676. |
69 | HASSANI B, HINTON E. A review of homogenization and topology optimization III—Topology optimization using optimality criteria[J]. Computers & Structures, 1998, 69(6): 739-756. |
70 | SIGMUND O. Materials with prescribed constitutive parameters: An inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17): 2313-2329. |
71 | ANDREASSEN E, ANDREASEN C S. How to determine composite material properties using numerical homogenization[J]. Computational Materials Science, 2014, 83: 488-495. |
72 | DONG G Y, TANG Y L, ZHAO Y F. A 149 line homogenization code for three-dimensional cellular materials written in Matlab[J]. Journal of Engineering Materials and Technology, 2019, 141(1): 011005. |
73 | BELYTSCHKO T, SONG J H. Coarse-graining of multiscale crack propagation[J]. International Journal for Numerical Methods in Engineering, 2010, 81(5): 537-563. |
74 | UNGER J F, ECKARDT S. Multiscale modeling of concrete[J]. Archives of Computational Methods in Engineering, 2011, 18(3): 341-393. |
75 | LLOBERAS-VALLS O, RIXEN D J, SIMONE A, et al. Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials[J]. International Journal for Numerical Methods in Engineering, 2012, 89(11): 1337-1366. |
76 | WU J, SIGMUND O, GROEN J P. Topology optimization of multi-scale structures: A review[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1455-1480. |
77 | SU W Z, LIU S T. Size-dependent optimal microstructure design based on couple-stress theory[J]. Structural and Multidisciplinary Optimization, 2010, 42(2): 243-254. |
78 | HUANG X, ZHOU S W, XIE Y M, et al. Topology optimization of microstructures of cellular materials and composites for macrostructures[J]. Computational Materials Science, 2013, 67: 397-407. |
79 | KATO J, YACHI D S, TERADA K, et al. Topology optimization of micro-structure for composites applying a decoupling multi-scale analysis[J]. Structural and Multidisciplinary Optimization, 2014, 49(4): 595-608. |
80 | KATO J, YACHI D S, KYOYA T, et al. Micro-macro concurrent topology optimization for nonlinear solids with a decoupling multiscale analysis[J]. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1189-1213. |
81 | DA D C, YVONNET J, XIA L, et al. Topology optimization of periodic lattice structures taking into account strain gradient[J]. Computers & Structures, 2018, 210: 28-40. |
82 | MONTEMURRO M, BERTOLINO G, ROINé T. A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology[J]. Composite Structures, 2021, 258: 113360. |
83 | MOSES E, FUCHS M B, RYVKIN M. Topological design of modular structures under arbitrary loading[J]. Structural and Multidisciplinary Optimization, 2002, 24(6): 407-417. |
84 | HUANG X, XIE Y M. Optimal design of periodic structures using evolutionary topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36(6): 597-606. |
85 | ZUO Z H, XIE Y M, HUANG X D. Optimal topological design of periodic structures for natural frequencies[J]. Journal of Structural Engineering, 2011, 137(10): 1229-1240. |
86 | XIE Y M, ZUO Z H, HUANG X D, et al. Convergence of topological patterns of optimal periodic structures under multiple scales[J]. Structural and Multidisciplinary Optimization, 2012, 46(1): 41-50. |
87 | THOMAS S, LI Q, STEVEN G. Topology optimization for periodic multi-component structures with stiffness and frequency criteria[J]. Structural and Multidisciplinary Optimization, 2020, 61(6): 2271-2289. |
88 | ALMEIDA S R M, PAULINO G H, SILVA E C N. Layout and material gradation in topology optimization of functionally graded structures: A global-local approach[J]. Structural and Multidisciplinary Optimization, 2010, 42(6): 855-868. |
89 | THOMAS S, LI Q, STEVEN G. Finite periodic topology optimization with oriented unit-cells[J]. Structural and Multidisciplinary Optimization, 2021, 64(4): 1765-1779. |
90 | ZUO Z H, HUANG X D, YANG X Y, et al. Comparing optimal material microstructures with optimal periodic structures[J]. Computational Materials Science, 2013, 69: 137-147. |
91 | LIU L, YAN J, CHENG G D. Optimum structure with homogeneous optimum truss-like material[J]. Computers & Structures, 2008, 86(13-14): 1417-1425. |
92 | YAN J, CHENG G D, LIU L. A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials[J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2008, 2(4): 259-266. |
93 | NIU B, YAN J, CHENG G D. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency[J]. Structural and Multidisciplinary Optimization, 2009, 39(2): 115-132. |
94 | DENG J D, YAN J, CHENG G D. Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material[J]. Structural and Multidisciplinary Optimization, 2013, 47(4): 583-597. |
95 | WADBRO E, NIU B. Multiscale design for additive manufactured structures with solid coating and periodic infill pattern[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112605. |
96 | YAN X L, HUANG X D, ZHA Y, et al. Concurrent topology optimization of structures and their composite microstructures[J]. Computers & Structures, 2014, 133: 103-110. |
97 | VICENTE W M, ZUO Z H, PAVANELLO R, et al. Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 301: 116-136. |
98 | XIA L A, BREITKOPF P. A reduced multiscale model for nonlinear structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 280: 117-134. |
99 | YAN X L, HUANG X D, SUN G Y, et al. Two-scale optimal design of structures with thermal insulation materials[J]. Composite Structures, 2015, 120: 358-365. |
100 | YAN X L, XU Q W, HUANG D F, et al. Concurrent topology design of structures and materials with optimal material orientation[J]. Composite Structures, 2019, 220: 473-480. |
101 | YAN X L, XU Q W, HUA H Y, et al. Concurrent optimization of macrostructures and material microstructures and orientations for maximizing natural frequency[J]. Engineering Structures, 2020, 209: 109997. |
102 | FRITZEN F, XIA L A, LEUSCHNER M, et al. Topology optimization of multiscale elastoviscoplastic structures[J]. International Journal for Numerical Methods in Engineering, 2016, 106(6): 430-453. |
103 | YAN J, HU W B, DUAN Z Y. Structure/material concurrent optimization of lattice materials based on extended multiscale finite element method[J]. International Journal for Multiscale Computational Engineering, 2015, 13(1): 73-90. |
104 | YAN J, SUI Q Q, FAN Z R, et al. Multi-material and multiscale topology design optimization of thermoelastic lattice structures[J]. Computer Modeling in Enginee-ring & Sciences, 2022, 130(2): 967-986. |
105 | CHENG G D, XU L. Two-scale topology design optimization of stiffened or porous plate subject to out-of-plane buckling constraint[J]. Structural and Multidisciplinary Optimization, 2016, 54(5): 1283-1296. |
106 | WANG Y Q, WANG M Y, CHEN F F. Structure-material integrated design by level sets[J]. Structural and Multidisciplinary Optimization, 2016, 54(5): 1145-1156. |
107 | ROBBINS J, OWEN S J, CLARK B W, et al. An efficient and scalable approach for generating topologically optimized cellular structures for additive manufacturing[J]. Additive Manufacturing, 2016, 12: 296-304. |
108 | CHEN W J, TONG L Y, LIU S T. Concurrent topology design of structure and material using a two-scale topology optimization[J]. Computers & Structures, 2017, 178: 119-128. |
109 | DA D C, CUI X Y, LONG K, et al. Concurrent topological design of composite structures and the underlying multi-phase materials[J]. Computers & Structures, 2017, 179: 1-14. |
110 | DA D C, CUI X Y, LONG K, et al. Multiscale concurrent topology optimization of structures and microscopic multi-phase materials for thermal conductivity[J]. Engineering Computations, 2019, 36(1): 126-146. |
111 | DA D C, XIA L A. Design of heterogeneous mesostructures for nonseparated scales and analysis of size effects[J]. International Journal for Numerical Methods in Engineering, 2021, 122(5): 1333-1351. |
112 | LONG K, YUAN P F, XU S Q, et al. Concurrent topological design of composite structures and materials containing multiple phases of distinct Poisson’s ratios[J]. Engineering Optimization, 2018, 50(4): 599-614. |
113 | LI H, LUO Z, XIAO M, et al. A new multiscale topology optimization method for multiphase composite structures of frequency response with level sets[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 356: 116-144. |
114 | FU J J, LI H, GAO L, et al. Design of shell-infill structures by a multiscale level set topology optimization method[J]. Computers & Structures, 2019, 212: 162-172. |
115 | ZHANG W H, SUN S P. Scale-related topology optimization of cellular materials and structures[J]. International Journal for Numerical Methods in Engineering, 2006, 68(9): 993-1011. |
116 | TROMME E, KAWAMOTO A, GUEST J K. Topology optimization based on reduction methods with applications to multiscale design and additive manufacturing[J]. Frontiers of Mechanical Engineering, 2020, 15(1): 151-165. |
117 | ALEXANDERSEN J, LAZAROV B S. Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 156-182. |
118 | COELHO P G, RODRIGUES H C. Hierarchical topology optimization addressing material design constraints and application to sandwich-type structures[J]. Structural and Multidisciplinary Optimization, 2015, 52(1): 91-104. |
119 | LI H, LUO Z, ZHANG N, et al. Integrated design of cellular composites using a level-set topology optimization method[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 309: 453-475. |
120 | LI H, LUO Z, GAO L, et al. Topology optimization for functionally graded cellular composites with metamaterials by level sets[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 340-364. |
121 | FUJIOKA M, SHIMODA M, AL ALI M. Shape optimization of periodic-microstructures for stiffness maximization of a macrostructure[J]. Composite Structures, 2021, 268: 113873. |
122 | SIVAPURAM R, DUNNING P D, KIM H A. Simultaneous material and structural optimization by multiscale topology optimization[J]. Structural and Multidisciplinary Optimization, 2016, 54(5): 1267-1281. |
123 | GUO X, ZHAO X F, ZHANG W S, et al. Multi-scale robust design and optimization considering load uncertainties[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 994-1009. |
124 | LI H, LUO Z, GAO L, et al. Topology optimization for concurrent design of structures with multi-patch microstructures by level sets[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 331: 536-561. |
125 | XU L, CHENG G D. Two-scale concurrent topology optimization with multiple micro materials based on principal stress orientation[J]. Structural and Multidisciplinary Optimization, 2018, 57(5): 2093-2107. |
126 | LIU K, DETWILER D, TOVAR A. Cluster-based optimization of cellular materials and structures for crashworthiness[J]. Journal of Mechanical Design, 2018, 140(11): 111412. |
127 | GAO J, LUO Z, LI H, et al. Topology optimization for multiscale design of porous composites with multi-domain microstructures[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 451-476. |
128 | GAO J, LUO Z, LI H, et al. Dynamic multiscale topology optimization for multi-regional micro-structured cellular composites[J]. Composite Structures, 2019, 211: 401-417. |
129 | PIZZOLATO A, SHARMA A, MAUTE K, et al. Multi-scale topology optimization of multi-material structures with controllable geometric complexity—Applications to heat transfer problems[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112552. |
130 | WANG Y G, KANG Z. Concurrent two-scale topological design of multiple unit cells and structure using combined velocity field level set and density model[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 340-364. |
131 | QIU Z, LI Q H, LIU S T, et al. Clustering-based concurrent topology optimization with macrostructure, components, and materials[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1243-1263. |
132 | JIA J, DA D C, LOH C L, et al. Multiscale topology optimization for non-uniform microstructures with hybrid cellular automata[J]. Structural and Multidisciplinary Optimization, 2020, 62(2): 757-770. |
133 | YAN J, SUI Q Q, FAN Z R, et al. Clustering-based multiscale topology optimization of thermo-elastic lattice structures[J]. Computational Mechanics, 2020, 66(4): 979-1002. |
134 | XU Z, ZHANG W H, ZHOU Y, et al. Multiscale topology optimization using feature-driven method[J]. Chinese Journal of Aeronautics, 2020, 33(2): 621-633. |
135 | LIAO H T. A single variable-based method for concurrent multiscale topology optimization with multiple materials[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 378: 113727. |
136 | GU X C, HE S M, DONG Y H, et al. An improved ordered SIMP approach for multiscale concurrent topology optimization with multiple microstructures[J]. Composite Structures, 2022, 287: 115363. |
137 | AL ALI M, SHIMODA M. Investigation of concurrent multiscale topology optimization for designing lightweight macrostructure with high thermal conductivity[J]. International Journal of Thermal Sciences, 2022, 179: 107653. |
138 | PANTZ O, TRABELSI K. A post-treatment of the homogenization method for shape optimization[J]. SIAM Journal on Control and Optimization, 2008, 47(3): 1380-1398. |
139 | ALLAIRE G, GEOFFROY-DONDERS P, PANTZ O. Topology optimization of modulated and oriented periodic microstructures by the homogenization method[J]. Computers & Mathematics with Applications, 2019, 78(7): 2197-2229. |
140 | GEOFFROY-DONDERS P, ALLAIRE G, PANTZ O. 3-D topology optimization of modulated and oriented periodic microstructures by the homogenization method[J]. Journal of Computational Physics, 2020, 401: 108994. |
141 | GROEN J P, SIGMUND O. Homogenization-based topology optimization for high-resolution manufacturable microstructures[J]. International Journal for Numerical Methods in Engineering, 2018, 113(8): 1148-1163. |
142 | GROEN J P, STUTZ F C, AAGE N, et al. De-homogenization of optimal multi-scale 3D topologies[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112979. |
143 | TAMIJANI A Y, VELASCO S P, ALACOQUE L. Topological and morphological design of additively-manufacturable spatially-varying periodic cellular solids[J]. Materials & Design, 2020, 196: 109155. |
144 | KUMAR T, SURESH K. A density-and-strain-based K-clustering approach to microstructural topology optimization[J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1399-1415. |
145 | LEE J, KWON C, YOO J, et al. Design of spatially-varying orthotropic infill structures using multiscale topology optimization and explicit de-homogenization[J]. Additive Manufacturing, 2021, 40: 101920. |
146 | WU J, WANG W M, GAO X F. Design and optimization of conforming lattice structures[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(1): 43-56. |
147 | JUNG T, LEE J, NOMURA T, et al. Inverse design of three-dimensional fiber reinforced composites with spatially-varying fiber size and orientation using multiscale topology optimization[J]. Composite Structures, 2022, 279: 114768. |
148 | XU L, QIAN Z H. Topology optimization and de-homogenization of graded lattice structures based on asymptotic homogenization[J]. Composite Structures, 2021, 277: 114633. |
149 | BURBLIES A, BUSSE M. Computer based porosity design by multi phase topology optimization[C]∥ AIP Conference Proceedings. AIP Conference Proceedings, 2008, 973(1): 285-290. |
150 | BRACKETT D, ASHCROFT I, HAGUE R. Topology optimization for additive manufacturing[C]∥ 2011 International Solid Freeform Fabrication Symposium. Austin: University of Texas, 2011. |
151 | ARABNEJAD KHANOKI S, PASINI D. Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material[J]. Journal of Biomechanical Engineering, 2012, 134(3): 031004. |
152 | WANG Y J, ARABNEJAD S, TANZER M, et al. Hip implant design with three-dimensional porous architecture of optimized graded density[J]. Journal of Mechanical Design, 2018, 140(11): 111406. |
153 | ALZAHRANI M, CHOI S K, ROSEN D W. Design of truss-like cellular structures using relative density mapping method[J]. Materials & Design, 2015, 85: 349-360. |
154 | CHENG L, ZHANG P, BIYIKLI E, et al. Integration of topology optimization with efficient design of additive manufactured cellular structures[C]∥ 2015 International Solid Freeform Fabrication Symposium. Austin: University of Texas, 2015. |
155 | CHENG L, ZHANG P, BIYIKLI E, et al. Efficient design optimization of variable-density cellular structures for additive manufacturing: Theory and experimental validation[J]. Rapid Prototyping Journal, 2017, 23: 660-677. |
156 | ZHANG P, TOMAN J, YU Y Q, et al. Efficient design-optimization of variable-density hexagonal cellular structure by additive manufacturing: Theory and validation[J]. Journal of Manufacturing Science and Engineering, 2015, 137(2): 021004. |
157 | CHENG L, LIANG X A, BELSKI E, et al. Natural frequency optimization of variable-density additive manufactured lattice structure: Theory and experimental validation[J]. Journal of Manufacturing Science and Engineering, 2018, 140(10): 105002. |
158 | WANG X, ZHANG P, LUDWICK S, et al. Natural frequency optimization of 3D printed variable-density honeycomb structure via a homogenization-based approach[J]. Additive Manufacturing, 2018, 20: 189-198. |
159 | CHENG L, LIU J K, TO A C. Concurrent lattice infill with feature evolution optimization for additive manufactured heat conduction design[J]. Structural and Multidisciplinary Optimization, 2018, 58(2): 511-535. |
160 | CHENG L, LIU J K, LIANG X, et al. Coupling lattice structure topology optimization with design-dependent feature evolution for additive manufactured heat conduction design[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 408-439. |
161 | CHENG L, BAI J X, TO A C. Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 334-359. |
162 | CLAUSEN A, AAGE N, SIGMUND O. Exploiting additive manufacturing infill in topology optimization for improved buckling load[J]. Engineering, 2016, 2(2): 250-257. |
163 | WU T, LIU K, TOVAR A. Multiphase topology optimization of lattice injection molds[J]. Computers & Structures, 2017, 192: 71-82. |
164 | WANG Y J, XU H, PASINI D. Multiscale isogeometric topology optimization for lattice materials[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 316: 568-585. |
165 | PANESAR A, ABDI M, HICKMAN D, et al. Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing[J]. Additive Manufacturing, 2018, 19: 81-94. |
166 | TANG Y L, ZHAO Y F. Multifunctional design of heterogeneous cellular structures[J]. Structural and Multidisciplinary Optimization, 2018, 58(3): 1121-1138. |
167 | WU Z J, XIA L, WANG S T, et al. Topology optimization of hierarchical lattice structures with substructuring[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 345: 602-617. |
168 | WU Z J, FAN F, XIAO R B, et al. The substructuring-based topology optimization for maximizing the first eigenvalue of hierarchical lattice structure[J]. International Journal for Numerical Methods in Engineering, 2020, 121(13): 2964-2978. |
169 | LIU Z, XIA L, XIA Q, et al. Data-driven design approach to hierarchical hybrid structures with multiple lattice configurations[J]. Structural and Multidisciplinary Optimization, 2020, 61(6): 2227-2235. |
170 | ZHU Y, ZHAO J Q, ZHANG M, et al. An improved density-based design method of additive manufacturing fabricated inhomogeneous cellular-solid structures[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(1): 103-116. |
171 | WATTS S, ARRIGHI W, KUDO J, et al. Simple, accurate surrogate models of the elastic response of three-dimensional open truss micro-architectures with applications to multiscale topology design[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 1887-1920. |
172 | JANSEN M, PIERARD O. A hybrid density/level set formulation for topology optimization of functionally graded lattice structures[J]. Computers & Structures, 2020, 231: 106205. |
173 | KIM D, LEE J, NOMURA T, et al. Topology optimization of functionally graded anisotropic composite structures using homogenization design method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 369: 113220. |
174 | KIM J E, PARK K. Multiscale topology optimization combining density-based optimization and lattice enhancement for additive manufacturing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(4): 1197-1208. |
175 | KUMAR T, SRIDHARA S, PRABHUNE B, et al. Spectral decomposition for graded multi-scale topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 113670. |
176 | ZHOU M D, GENG D. Multi-scale and multi-material topology optimization of channel-cooling cellular structures for thermomechanical behaviors[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 383: 113896. |
177 | ZHOU H, ZHU J H, WANG C, et al. Hierarchical structure optimization with parameterized lattice and multiscale finite element method[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 39. |
178 | CRAMER A D, CHALLIS V J, ROBERTS A P. Microstructure interpolation for macroscopic design[J]. Structural and Multidisciplinary Optimization, 2016, 53(3): 489-500. |
179 | LI D W, LIAO W H, DAI N, et al. Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing[J]. Computer-Aided Design, 2018, 104: 87-99. |
180 | LI D W, DAI N, TANG Y L, et al. Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes[J]. Journal of Mechanical Design, 2019, 141(7): 071402. |
181 | HU J Q, LI M, GAO S M. Texture-guided generative structural designs under local control[J]. Computer-Aided Design, 2019, 108: 1-11. |
182 | DENG H, TO A C. Projection-based implicit modeling method (PIMM) for functionally graded lattice optimization[J]. JOM, 2021, 73(7): 2012-2021. |
183 | LI M, ZHU L C, LI J Z, et al. Design optimization of interconnected porous structures using extended triply periodic minimal surfaces[J]. Journal of Computational Physics, 2021, 425: 109909. |
184 | NGUYEN C H P, CHOI Y. Multiscale design of functionally graded cellular structures for additive manufacturing using level-set descriptions[J]. Structural and Multidisciplinary Optimization, 2021, 64(4): 1983-1995. |
185 | NGUYEN C H P, KIM Y, DO Q T, et al. Implicit-based computer-aided design for additively manufactured functionally graded cellular structures[J]. Journal of Computational Design and Engineering, 2021, 8(3): 813-823. |
186 | MONTEMURRO M, REFAI K, CATAPANO A. Thermal design of graded architected cellular materials through a CAD-compatible topology optimisation method[J]. Composite Structures, 2022, 280: 114862. |
187 | LIU H, CHEN L X, JIANG Y, et al. Multiscale optimization of additively manufactured graded non-stochastic and stochastic lattice structures[J]. Composite Structures, 2023, 305: 116546. |
188 | WANG Y Q, CHEN F F, WANG M Y. Concurrent design with connectable graded microstructures[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 317: 84-101. |
189 | WANG Y Q, ZHANG L, DAYNES S, et al. Design of graded lattice structure with optimized mesostructures for additive manufacturing[J]. Materials & Design, 2018, 142: 114-123. |
190 | ZONG H M, LIU H, MA Q P, et al. VCUT level set method for topology optimization of functionally graded cellular structures[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 487-505. |
191 | LIU H, ZONG H M, SHI T L, et al. M-VCUT level set method for optimizing cellular structures[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 367: 113154. |
192 | LIU H, CHEN L X, SHI T L, et al. M-VCUT level set method for the layout and shape optimization of stiffeners in plate[J]. Composite Structures, 2022, 293: 115614. |
193 | LIU H, CHEN L X, BIAN H. Data-driven M-VCUT topology optimization method for heat conduction problem of cellular structure with multiple microstructure prototypes[J]. International Journal of Heat and Mass Transfer, 2022, 198: 123421. |
194 | XIA Q, ZONG H M, SHI T L, et al. Optimizing cellular structures through the M-VCUT level set method with microstructure mapping and high order cutting[J]. Composite Structures, 2021, 261: 113298. |
195 | ZHOU Y, GAO L, LI H. Graded infill design within free-form surfaces by conformal mapping[J]. International Journal of Mechanical Sciences, 2022, 224: 107307. |
196 | HUO S L, DU B X, ZHAO Y, et al. Thermal design of functionally graded cellular structures with multiple microstructure configurations through topology optimization[J]. Composite Structures, 2023, 313: 116922. |
197 | SCHURY F, STINGL M, WEIN F. Efficient two-scale optimization of manufacturable graded structures[J]. SIAM Journal on Scientific Computing, 2012, 34(6): B711-B733. |
198 | LIU C, DU Z L, ZHANG W S, et al. Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization[J]. Journal of Applied Mechanics, 2017, 84(8): 081008. |
199 | ZHU Y C, LI S S, DU Z L, et al. A novel asymptotic-analysis-based homogenisation approach towards fast design of infill graded microstructures[J]. Journal of the Mechanics and Physics of Solids, 2019, 124: 612-633. |
200 | WANG C, ZHU J H, ZHANG W H, et al. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures[J]. Structural and Multidisciplinary Optimization, 2018, 58(1): 35-50. |
201 | WANG C, GU X J, ZHU J H, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2020, 61(3): 869-894. |
202 | ZHANG Y, XIAO M, LI H, et al. Multiscale concurrent topology optimization for cellular structures with multiple microstructures based on ordered SIMP interpolation[J]. Computational Materials Science, 2018, 155: 74-91. |
203 | ZHANG Y, GAO L, XIAO M. Maximizing natural frequencies of inhomogeneous cellular structures by Kriging-assisted multiscale topology optimization[J]. Compu-ters & Structures, 2020, 230: 106197. |
204 | ZHANG Y, LI H, XIAO M, et al. Concurrent topology optimization for cellular structures with nonuniform microstructures based on the kriging metamodel[J]. Structural and Multidisciplinary Optimization, 2019, 59(4): 1273-1299. |
205 | HAN Y F, LU W F. A novel design method for nonuniform lattice structures based on topology optimization[J]. Journal of Mechanical Design, 2018, 140(9): 091403. |
206 | IMEDIEGWU C, MURPHY R, HEWSON R, et al. Multiscale structural optimization towards three-dimensional printable structures[J]. Structural and Multidisciplinary Optimization, 2019, 60(2): 513-525. |
207 | IMEDIEGWU C, MURPHY R, HEWSON R, et al. Multiscale thermal and thermo-structural optimization of three-dimensional lattice structures[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 13. |
208 | KANG D, PARK S, SON Y, et al. Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process[J]. Materials & Design, 2019, 175: 107786. |
209 | LIU H, ZONG H M, TIAN Y, et al. A novel subdomain level set method for structural topology optimization and its application in graded cellular structure design[J]. Structural and Multidisciplinary Optimization, 2019, 60(6): 2221-2247. |
210 | LI Q H, XU R, LIU J, et al. Topology optimization design of multi-scale structures with alterable microstructural length-width ratios[J]. Composite Structures, 2019, 230: 111454. |
211 | ZHAO J Q, ZHANG M, ZHU Y, et al. A novel optimization design method of additive manufacturing oriented porous structures and experimental validation[J]. Materials & Design, 2019, 163: 107550. |
212 | XU M M, XIA L, WANG S T, et al. An isogeometric approach to topology optimization of spatially graded hierarchical structures[J]. Composite Structures, 2019, 225: 111171. |
213 | DAS S, SUTRADHAR A. Multi-physics topology optimization of functionally graded controllable porous structures: Application to heat dissipating problems[J]. Materials & Design, 2020, 193: 108775. |
214 | DONG G Y, TANG Y L, LI D W, et al. Design and optimization of solid lattice hybrid structures fabricated by additive manufacturing[J]. Additive Manufacturing, 2020, 33: 101116. |
215 | JIANG L, GUO Y, CHEN S K, et al. Concurrent optimization of structural topology and infill properties with a CBF-based level set method[J]. Frontiers of Mechanical Engineering, 2019, 14(2): 171-189. |
216 | LI D W, LIAO W H, DAI N, et al. Anisotropic design and optimization of conformal gradient lattice structures[J]. Computer-Aided Design, 2020, 119: 102787. |
217 | WU T Y, LI S. An efficient multiscale optimization method for conformal lattice materials[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1063-1083. |
218 | YU H C, HUANG J Q, ZOU B, et al. Stress-constrained shell-lattice infill structural optimisation for additive manufacturing[J]. Virtual and Physical Prototyping, 2020, 15(1): 35-48. |
219 | AGRAWAL Y, ANANTHASURESH G K. Towards optimal heterogeneity in lattice structures[J]. Structural and Multidisciplinary Optimization, 2021, 64(4): 2489-2512. |
220 | GANGWAR T, SCHILLINGER D. Concurrent material and structure optimization of multiphase hierarchical systems within a continuum micromechanics framework[J]. Structural and Multidisciplinary Optimization, 2021, 64(3): 1175-1197. |
221 | JIANG L, GU X D, CHEN S K. Generative design of bionic structures via concurrent multiscale topology optimization and conformal geometry method[J]. Journal of Mechanical Design, 2021, 143(1): 011701. |
222 | LI Q H, XU R, WU Q B, et al. Topology optimization design of quasi-periodic cellular structures based on erode-dilate operators[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 113720. |
223 | LUO Y F, HU J Y, LIU S T. Self-connected multi-domain topology optimization of structures with multiple dissimilar microstructures[J]. Structural and Multidisciplinary Optimization, 2021, 64(1): 125-140. |
224 | MOUSSA A, MELANCON D, ELMI A EL, et al. Topology optimization of imperfect lattice materials built with process-induced defects via Powder Bed Fusion[J]. Additive Manufacturing, 2021, 37: 101608. |
225 | YPSILANTIS K I, KAZAKIS G, LAGAROS N D. An efficient 3D homogenization-based topology optimization methodology[J]. Computational Mechanics, 2021, 67(2): 481-496. |
226 | ZHANG J W, YANAGIMOTO J. Topology optimization of microlattice dome with enhanced stiffness and energy absorption for additive manufacturing[J]. Composite Structures, 2021, 255: 112889. |
227 | BRUGGI M, ISMAIL H, LóGó J, et al. Lightweight design with displacement constraints using graded porous microstructures[J]. Computers & Structures, 2022, 272: 106873. |
228 | LIU X L, GAO L, XIAO M, et al. Kriging-assisted design of functionally graded cellular structures with smoothly-varying lattice unit cells[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114466. |
229 | COSTA M R, SOHOULI A, SULEMAN A. Multi-scale and multi-material topology optimization of gradient lattice structures using surrogate models[J]. Composite Structures, 2022, 289: 115402. |
230 | YU C, WANG Q F, XIA Z H, et al. Multiscale topology optimization for graded cellular structures based on level set surface cutting[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 32. |
231 | WU J, AAGE N, WESTERMANN R, et al. Infill optimization for additive manufacturing-approaching bone-like porous structures[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(2): 1127-1140. |
232 | SCHMIDT M P, PEDERSEN C B W, GOUT C. On structural topology optimization using graded porosity control[J]. Structural and Multidisciplinary Optimization, 2019, 60(4): 1437-1453. |
233 | GARAIGORDOBIL A, ANSOLA R, QUERIN O M, et al. Infill topology optimization of porous structures with discrete variables by the sequential element rejection and admission method[J]. Engineering Optimization, 2021, 55(3): 457-475. |
234 | LONG K, CHEN Z, ZHANG C W, et al. An aggregation-free local volume fraction formulation for topological design of porous structure[J]. Materials, 2021, 14(19): 5726. |
235 | ZOWE J, KO?VARA M, BENDS?E M P. Free material optimization via mathematical programming[J]. Mathematical Programming, 1997, 79(1): 445-466. |
236 | RODRIGUES H, GUEDES J M, BENDSOE M P. Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization, 2002, 24(1): 1-10. |
237 | GUEDES J M, LUBRANO E, RODRIGUES H C, et al. Hierarchical optimization of material and structure for thermal transient problems[J]. Solid Mechanics and its Applications, 2006, 137: 527-536. |
238 | COELHO P G, FERNANDES P R, GUEDES J M, et al. A hierarchical model for concurrent material and topology optimisation of three-dimensional structures[J]. Structural and Multidisciplinary Optimization, 2008, 35(2): 107-115. |
239 | BARBAROSIE C, TOADER A M. Optimization of bodies with locally periodic microstructure[J]. Mechanics of Advanced Materials and Structures, 2012, 19(4): 290-301. |
240 | BARBAROSIE C, TOADER A M. Optimization of bodies with locally periodic microstructure by varying the periodicity pattern[J]. Networks & Heterogeneous Media, 2014, 9(3): 433-451. |
241 | XIA L A, BREITKOPF P. Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278: 524-542. |
242 | XIA L A, BREITKOPF P. Multiscale structural topology optimization with an approximate constitutive model for local material microstructure[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 286: 147-167. |
243 | FERRER A, OLIVER J, CANTE J C, et al. Vademecum-based approach to multi-scale topological material design[J]. Advanced Modeling and Simulation in Engineering Sciences, 2016, 3(1): 1-22. |
244 | FERRER A, CANTE J C, HERNáNDEZ J A, et al. Two-scale topology optimization in computational material design: An integrated approach[J]. International Journal for Numerical Methods in Engineering, 2018, 114(3): 232-254. |
245 | LIU X C, SHAPIRO V. Sample-based synthesis of two-scale structures with anisotropy[J]. Computer-Aided Design, 2017, 90: 199-209. |
246 | ZHU B, SKOURAS M, CHEN D S, et al. Two-scale topology optimization with microstructures[J]. ACM Transactions on Graphics, 36(5): 164. |
247 | SEO M, PARK H, MIN S. Heat flux manipulation by using a single-variable formulated multi-scale topology optimization method[J]. International Communications in Heat and Mass Transfer, 2020, 118: 104873. |
248 | SHA W, XIAO M, ZHANG J H, et al. Robustly printable freeform thermal metamaterials[J]. Nature Communications, 2021, 12: 7228. |
249 | 廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51(3): 648-701. |
LIAN Y P, WANG P D, GAO J, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review[J]. Advances in Mechanics, 2021, 51(3): 648-701 (in Chinese). | |
250 | ZHOU S W, LI Q. Design of graded two-phase microstructures for tailored elasticity gradients[J]. Journal of Materials Science, 2008, 43(15): 5157-5167. |
251 | ZHOU S W, LI Q. Microstructural design of connective base cells for functionally graded materials[J]. Materials Letters, 2008, 62(24): 4022-4024. |
252 | DURIEZ E, MORLIER J, CHARLOTTE M, et al. A well connected, locally-oriented and efficient multi-scale topology optimization (EMTO) strategy[J]. Structural and Multidisciplinary Optimization, 2021, 64(6): 3705-3728. |
253 | LIU P, KANG Z, LUO Y J. Two-scale concurrent topology optimization of lattice structures with connectable microstructures[J]. Additive Manufacturing, 2020, 36: 101427. |
254 | RADMAN A, HUANG X, XIE Y M. Topology optimization of functionally graded cellular materials[J]. Journal of Materials Science, 2013, 48(4): 1503-1510. |
255 | DU Z L, ZHOU X Y, PICELLI R, et al. Connecting microstructures for multiscale topology optimization with connectivity index constraints[J]. Journal of Mechanical Design, 2018, 140(11): 111417. |
256 | GARNER E, KOLKEN H M A, WANG C C L, et al. Compatibility in microstructural optimization for additive manufacturing[J]. Additive Manufacturing, 2019, 26: 65-75. |
257 | SANDERS E D, PEREIRA A, PAULINO G H. Optimal and continuous multilattice embedding[J]. Science Advances, 2021, 7(16): eabf4838. |
258 | NAKSHATRALA P B, TORTORELLI D A, NAKSHATRALA K B. Nonlinear structural design using multiscale topology optimization. Part I: Static formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 261-262: 167-176. |
259 | FU J J, XIA L A, GAO L A, et al. Topology optimization of periodic structures with substructuring[J]. Journal of Mechanical Design, 2019, 141(7): 071403. |
260 | ZHANG Z Y, LI Y, ZHOU W E, et al. TONR: An exploration for a novel way combining neural network with topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 386: 114083. |
261 | WHITE D A, ARRIGHI W J, KUDO J, et al. Multiscale topology optimization using neural network surrogate models[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 1118-1135. |
262 | KIM C, LEE J, YOO J. Machine learning-combined topology optimization for functionary graded composite structure design[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 387: 114158. |
263 | GUO Y L, YING HSI J FUH, FENG L W. Multiscale topology optimisation with nonparametric microstructures using three-dimensional convolutional neural network (3D-CNN) models[J]. Virtual and Physical Prototyping, 2021, 16(3): 306-317. |
264 | ZHENG L, KUMAR S, KOCHMANN D M. Data-driven topology optimization of spinodoid metamaterials with seamlessly tunable anisotropy[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 383: 113894. |
265 | BLACK N, NAJAFI A R. Deep neural networks for parameterized homogenization in concurrent multiscale structural optimization[J]. Structural and Multidisciplinary Optimization, 2023, 66(1): 20. |
266 | CHAN Y C, DA D C, WANG L W, et al. Remixing functionally graded structures: Data-driven topology optimization with multiclass shape blending[J]. Structural and Multidisciplinary Optimization, 2022, 65(5): 135. |
267 | TAN R K, ZHANG N L, YE W J. A deep learning-based method for the design of microstructural materials[J]. Structural and Multidisciplinary Optimization, 2020, 61(4): 1417-1438. |
268 | WANG L W, CHAN Y C, AHMED F, et al. Deep generative modeling for mechanistic-based learning and design of metamaterial systems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113377. |
269 | PATEL D, BIELECKI D, RAI R, et al. Improving connectivity and accelerating multiscale topology optimization using deep neural network techniques[J]. Structural and Multidisciplinary Optimization, 2022, 65(4): 1-19. |
270 | CHANDRASEKHAR A, SURESH K. TOuNN: Topology optimization using neural networks[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1135-1149. |
271 | CHANDRASEKHAR A, SRIDHARA S, SURESH K. Graded multiscale topology optimization using neural networks[J]. Advances in Engineering Software, 2023, 175: 103359. |
272 | CHANDRASEKHAR A, MIRZENDEHDEL A, BEHANDISH M, et al. FRC-TOuNN: Topology optimization of continuous fiber reinforced composites using neural network[J]. Computer-Aided Design, 2023, 156: 103449. |
273 | RASTEGARZADEH S, WANG J, HUANG J D. Neural network-assisted design: A study of multiscale topology optimization with smoothly graded cellular structures[J]. Journal of Mechanical Design, 2023, 145(1): 011701. |
274 | SRIDHARA S, CHANDRASEKHAR A, SURESH K. A generalized framework for microstructural optimization using neural networks[J]. Materials & Design, 2022, 223: 111213. |
275 | ELINGAARD M O, AAGE N, B?RENTZEN J A, et al. De-homogenization using convolutional neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114197. |
/
〈 |
|
〉 |