基于轨迹映射的无人机拖曳式空中回收轨迹优化
收稿日期: 2023-03-30
修回日期: 2023-04-27
录用日期: 2023-05-30
网络出版日期: 2023-06-05
基金资助
国家自然科学基金(62173022)
Recovery trajectory optimization for UAV towed aerial recovery based on trajectory mapping
Received date: 2023-03-30
Revised date: 2023-04-27
Accepted date: 2023-05-30
Online published: 2023-06-05
Supported by
National Natural Science Foundation of China(62173022)
针对无人机拖曳式空中回收过程中的轨迹优化问题,提出一种基于轨迹映射的无人机回收轨迹在线优化方法。首先,建立包括缆绳-浮标-无人机组合体的运动模型、机翼折叠模型在内的空中回收系统模型。随后,提出轨迹映射的思想,利用双向长短期记忆(BiLSTM)神经网络建立回收系统中回收指令和回收轨迹之间的精确映射关系。然后,利用轨迹映射网络实时预测不同指令下的回收轨迹,并根据计算的预测轨迹代价利用粒子群优化(PSO)算法优化得到最佳回收指令。最后,仿真结果表明:所提的轨迹映射网络具有较高的预测精度和计算速度,所提的方法可以优化出使无人机稳定快速回收的轨迹。
王宏伦 , 王延祥 , 刘一恒 . 基于轨迹映射的无人机拖曳式空中回收轨迹优化[J]. 航空学报, 2023 , 44(20) : 628775 -628775 . DOI: 10.7527/S1000-6893.2023.28775
For the problem of trajectory optimization in the process of Unmanned Aerial Vehicle (UAV) towed aerial recovery, an optimization method of UAV recovery trajectory is proposed based on trajectory mapping. First, an aerial recovery system model, including the cable-drogue-UAV assembly model and the wing fold model, is established. Second, the idea of trajectory mapping is put forward, and the accurate mapping relationship between the recovery instruction and the recovery trajectory in the recovery system is established by using the Bidirectional Long Short-Term Memory (BiLSTM) neural network. Third, the trajectory mapping network is utilized to predict the real recovery trajectory under different instructions in real time, and the Particle Swarm Optimization (PSO) algorithm is used to optimize the optimal recovery instruction according to the calculated predicted trajectory cost. Finally, the simulation results show that the proposed trajectory mapping network has high prediction accuracy and calculation speed, and the proposed optimization method can achieve stable and rapid recovery of UAV.
1 | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. |
WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732 (in Chinese). | |
2 | 苏子康, 徐忠楠, 李春涛, 等. 伸缩套臂式无人机空基回收建模与对接控制[J]. 航空学报, 2023, 44(1): 227-244. |
SU Z K, XU Z N, LI C T, et al. Modeling and docking control of UAV aerial recovery in form of telescopic boom[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 227-244 (in Chinese). | |
3 | 向锦武, 董希旺, 丁文锐, 等. 复杂环境下无人集群系统自主协同关键技术[J]. 航空学报, 2022, 43(10): 527570. |
XIANG J W, DONG X W, DING W R, et al. Key technologies for autonomous cooperation of unmanned swarm systems in complex environments[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527570 (in Chinese). | |
4 | 黄雷. 美军小精灵无人机群项目发展现状综述[J]. 飞航导弹, 2018(7): 44-47. |
HUANG L. Summary of the development status of the US army elf UAV group project[J]. Aerodynamic Missile Journal, 2018(7): 44-47 (in Chinese). | |
5 | WANG Y X, WANG H L, LIU B L, et al. A visual navigation framework for the aerial recovery of UAVs [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13. |
6 | 苏子康, 陈海通, 李春涛, 等. 非匹配包线下无人机空基回收拖曳系统协调运动规划[J]. 航空学报, 2023, 44(10): 195-211. |
SU Z K, CHEN H T, LI C T, et al. Coordinating motion planning for towed cable system in UAV aerial recovery with unmatched envelope[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 195-211 (in Chinese). | |
7 | HOCHSTETLER R D, BOSMA J, CHACHAD G, et al. Lighter-than-air (LTA) “AirStation” - unmanned aircraft system (UAS) carrier concept[C]∥ Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston, Virginia: AIAA, 2016: AIAA2016-4223. |
8 | 陈嘉, 李雪兵, 徐忠楠, 等. 空基回收无人机头部扰流场CFD仿真与分析[J]. 航空科学技术, 2022, 33(10): 103-110. |
CHEN J, LI X B, XU Z N, et al. CFD simulation and analysis of aerial recovery UAV bow wave[J]. Aeronautical Science & Technology, 2022, 33(10): 103-110 (in Chinese). | |
9 | SU Z K, LI C T, WU J F, et al. Neuro-adaptive prescribed performance control for aerial-recovery drogue with actuator constraints[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(8): 1451-1465. |
10 | SU Z K, LIU Y H, WANG H L. Probe dynamics direct control for aerial recovery with preassigned docking performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3509-3523. |
11 | LIU Y H, WANG H L, FAN J X, et al. Trajectory stabilization control for aerial recovery of cable-drogue-UAV assembly[J]. Nonlinear Dynamics, 2021, 105(4): 3191-3210. |
12 | WILLIAMS P, SGARIOTO D, TRIVAILO P M. Constrained path-planning for an aerial-towed cable system[J]. Aerospace Science and Technology, 2008, 12(5): 347-354. |
13 | 陈海通,苏子康,李春涛,等.空基回收拖曳系统直线-盘旋转接段运动轨迹设计[J/OL].北京航空航天大学学报,(2022-11-08) [2023-05-13]. . |
CHEN H T, SU Z K, LI C T, et al. Trajectory design for transition flight process of the aerial recovery system [J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2022-11-08) [2023-05-13] (in Chinese) . | |
14 | NICHOLS J W, SUN L, BEARD R W, et al. Aerial rendezvous of small unmanned aircraft using a passive towed cable system[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4): 1131-1142. |
15 | SUN L A, HEDENGREN J D, BEARD R W. Optimal trajectory generation using model predictive control for aerially towed cable systems[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 525-539. |
16 | MERZ M, JOHANSEN T A. Control of an end body towed by a circling unmanned aerial vehicle[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(12): 2677-2686. |
17 | 苏子康,李春涛,余跃,等. 绳系拖曳飞行器高抗扰轨迹跟踪控制[J]. 北京航空航天大学学报,2021, 47(11): 2234-2248. |
SU Z K, LI C T, YU Y, et al. High anti-disturbance trajectory tracking control for cable towed vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2234-2248 (in Chinese). | |
18 | TANAKA K, TANAKA M, TAKAHASHI Y, et al. 3-D flight path tracking control for unmanned aerial vehicles under wind environments[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 11621-11634. |
19 | 苏子康. 多重复杂干扰作用下无人机软式自主空中加油精准对接控制[D]. 北京:北京航空航天大学,2018: 49-56. |
SU Z K. Accurate docking control for UAV autonomous probe-drogue refueling under multiple complex disturbances[D]. Beijing: Beihang University, 2018: 49-56 (in Chinese). | |
20 | WANG H T, DONG X M, XUE J P, et al. Dynamic modeling of a hose-drogue aerial refueling system and integral sliding mode backstepping control for the hose whipping phenomenon[J]. Chinese Journal of Aeronautics, 2014, 27(4): 930-946. |
21 | SONG N N, PENG H J, KAN Z Y, et al. A novel nonsmooth approach for flexible multibody systems with contact and friction in 3D space[J]. Nonlinear Dynamics, 2020, 102(3): 1375-1408. |
22 | 蔡云鹏, 王延祥, 王大勇, 等. 加油软管释放过程中的动态特性研究[J]. 战术导弹技术, 2022(6): 54-62. |
CAI Y P, WANG Y X, WANG D Y, et al. Study on dynamic characteristics of refueling hose during release[J]. Tactical Missile Technology, 2022(6): 54-62 (in Chinese). | |
23 | WANG Y X, WANG H L, LIU Y H, et al. Modeling and predefined-time anti-disturbance control for the aerial refueling phase of receiver aircraft[J]. Applied Mathematical Modelling, 2022, 112: 540-559. |
24 | LIU Y H, WANG H L, FAN J X, et al. Control-oriented UAV highly feasible trajectory planning: a deep learning method[J]. Aerospace Science and Technology, 2021, 110: 106435. |
25 | LIU Y H, WANG H L, FAN J X. Novel docking controller for autonomous aerial refueling with probe direct control and learning-based preview method[J]. Aerospace Science and Technology, 2019, 94: 105403. |
26 | 李文成. 变体飞行器动力学建模与稳定性分析及控制[D]. 南京: 南京航空航天大学,2018: 7. |
LI W C. Dynamics modeling, stability analysis and control of morphing aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 7 (in Chinese). | |
27 | LIU Y H, WANG H L, WANG Y X, et al. Anti-swing coordinated control of the UAV wing folding during the aerial recovery process[C]∥International Conference on Guidance, Navigation and Control. Singapore: Springer, 2023: 5212-5220. |
28 | KENNEDY J, EBERHART R. Particle swarm optimization[C]∥ Proceedings of ICNN’95 - International Conference on Neural Networks. Piscataway: IEEE Press, 2002: 1942-1948. |
29 | HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. |
30 | 杨超, 张开富. 基于PSO-BiLSTM神经网络的机身筒段应力预测[J]. 航空学报, 2023, 44(7): 266-275. |
YANG C, ZHANG K F. Stress prediction of fuselage tube section based on PSO-BiLSTM neural network[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 266-275 (in Chinese). | |
31 | WU T C, WANG H L, YU Y, et al. Hierarchical fault-tolerant control for over-actuated hypersonic reentry vehicles[J]. Aerospace Science and Technology, 2021, 119: 107134. |
32 | 王志刚, 王业光, 杨宁, 等. 基于LSTM的飞行数据挖掘模型构建方法[J]. 航空学报, 2021, 42(8): 525800. |
WANG Z G, WANG Y G, YANG N, et al. Construction method of flight data mining model based on LSTM[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525800 (in Chinese). |
/
〈 |
|
〉 |