纵向分段多级压缩乘波前体设计方法
收稿日期: 2023-03-27
修回日期: 2023-04-17
录用日期: 2023-05-19
网络出版日期: 2023-06-05
基金资助
省部级项目
Waverider forebody design method with longitudinal segments and multi-stage compression
Received date: 2023-03-27
Revised date: 2023-04-17
Accepted date: 2023-05-19
Online published: 2023-06-05
Supported by
Provincial or Ministerial Level Project
吸气式高速飞行器以超燃冲压发动机为动力,采用乘波体作为前体为进气道提供预压缩气流,前体的压缩能力对飞行器性能和超燃冲压发动机的性能起着决定性作用。乘波体的压缩性能与马赫数和激波角密切相关,单级压缩通常需要较大激波角才能满足进气道气流增压比的需求,同时也会引起前体气动性能降低,产生较大的抬头力矩和较低升阻比。为进一步提高乘波前体的压缩性能,提出了一种纵向分段的多级压缩乘波前体设计方法,可以根据进气道入口需求灵活调整压缩量和长度比例,且高压区主要聚集在乘波体出口中间位置,能够匹配宽范围的进气道,避免较大的边缘压力泄漏。基于该方法完成了多级压缩的程序开发,分别开展了锥导和吻切锥二级/三级压缩前体的设计与分析。数值结果表明,设计的多级压缩乘波体压缩能力显著提升,可同时满足高增压比、高总压恢复系数和高升阻比等设计需求,具有较好的工程应用前景。
陈立立 , 刘建霞 , 张俊韬 , 郭正 , 吴岸平 , 侯中喜 . 纵向分段多级压缩乘波前体设计方法[J]. 航空学报, 2024 , 45(4) : 128744 -128744 . DOI: 10.7527/S1000-6893.2023.28744
The air-breathing high speed vehicle is powered by a scramjet and uses the waverider as a forebody to provide compressed airflow for the intake. The compressibility of the forebody plays a decisive role in the performance of the aircraft and scramjet. The compression performance of the waverider is closely related to the Mach number and shock angle. The single-stage compression usually requires a larger shock angle to meet the requirements of the intake airflow pressure-boost ratio, and meanwhile, the forebody aerodynamic performance is reduced with the larger pitching moment and lower lift-to-drag ratio. To further improve the compression ability of the waverider forebody, a longitudinally segmented multi-stage compression waverider forebody design method is proposed, which can flexibly adjust the compression amount and length ratio according to the inlet need of intake. The produced high pressure area is mainly concentrated in the middle position of the lower waverider surface, which can match a wide range of intake and avoid more edge pressure leakage. Based on the method, the design code is developed, and the two-stage and three-stage cone-derived and osculating-cone waveriders are designed and analyzed, respectively. The numerical results show that the designed waverider has significantly improved compressibility and can simultaneously satisfy the high static pressure, high total pressure recovery and high lift-to-drag ratio with good engineering application prospects.
1 | 杨帆, 李小林, 刘小波, 等. 基于特征线理论的超声速进气道压缩面设计研究[J]. 空天防御, 2019, 2(1): 22-28. |
YANG F, LI X L, LIU X B, et al. Investigation on the supersonic inlet compression surface design based on the MOC method[J]. Air & Space Defense, 2019, 2(1): 22-28 (in Chinese). | |
2 | HUANG G P, ZHOU M A, CHEN J E, et al. A new combined design of inlet and forebody for high-speed vehicle[C]∥Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011. |
3 | BERENS T M, BISSINGER N C. Forebody precompression effects and inlet entry conditions for hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 1998, 35(1): 30-36. |
4 | 姚源, 陈萱. 美国发布SR-72高超声速飞机概念[J]. 中国航天, 2013(12): 39-41. |
YAO Y, CHEN X. The United States released the concept of SR-72 hypersonic aircraft[J]. Aerospace China, 2013(12): 39-41 (in Chinese). | |
5 | WALKER S, TANG M, MORRIS S, et al. Falcon HTV-3X─A reusable hypersonic test bed[C]∥Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
6 | BISSINGER N C, BLAGOVESHCHENSKY N A, GUBANOV A A, et al. Improvement of forebody/inlet integration for hypersonic vehicle[J]. Aerospace Science and Technology, 1998, 2(8): 505-514. |
7 | HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston: AIAA, 1994. |
8 | VOLAND R T, HUEBNER L D, MCCLINTON C R. X-43A hypersonic vehicle technology development[J]. Acta Astronautica, 2006, 59(1-5): 181-191. |
9 | 易军, 肖洪, 商旭升. 两种高超声速一体化构型的气动性能对比分析[J]. 航空工程进展, 2011, 2(3): 305-311. |
YI J, XIAO H, SHANG X S. Aerodynamic performance research of two integrated hypersonic configurations[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3): 305-311 (in Chinese). | |
10 | 张孙. 类X-43A高超声速飞行器气动力特性及其全流道流动特征的研究[D]. 南京: 南京航空航天大学, 2007. |
ZHANG S. Investigation of aerodynamic performance and inner flow characteristics of a hypersonic vehicle like X-43A[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). | |
11 | HANK J, MURPHY J, MUTZMAN R. The X-51A scramjet engine flight demonstration program[C]∥Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008. |
12 | VAN WIE D, M?LDER S. Applications of Busemann inlet designs for flight at hypersonic speeds[C]∥1992 Aerospace Design Conference. Reston: AIAA, 1992. |
13 | MCINTOSH K A, LINTON M, RUMPFKEIL M P, et al. Experimental and computational study of generic busemann inlets[C]∥Proceedings of the AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
14 | BUSEMANN A. Die achsensymmetrische kegelige überschallstr?mung [J]. Luftfahrtforschung, 1942, 19(4): 137-144. |
15 | ZUO F Y, M?LDER S. Flow quality in an M-Busemann wavecatcher intake[J]. Aerospace Science and Technology, 2022, 121: 107376. |
16 | 何家祥, 金东海. 基于Busemann压升规律的可控消波内转基准流场设计[J]. 航空动力学报, 2017, 32(5): 1168-1175. |
HE J X, JIN D H. Busemann pressure rise distribution based design of inward turning basic flowfield with controlled and cancelled shock waves[J]. Journal of Aerospace Power, 2017, 32(5): 1168-1175 (in Chinese). | |
17 | 郑晓刚, 朱呈祥, 尤延铖. 基于局部偏转吻切方法的多级压缩乘波体设计[J]. 力学学报, 2022, 54(3): 601-611. |
ZHENG X G, ZHU C X, YOU Y C. Design of multistage compression waverider based on the localturning osculating cones method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 601-611 (in Chinese). | |
18 | 刘嘉, 王发民. 乘波前体构型设计与压缩性能分析[J]. 工程力学, 2003, 20(6): 130-134. |
LIU J, WANG F M. Waverider configuration design and forebody compressibility analysis[J]. Engineering Mechanics, 2003, 20(6): 130-134 (in Chinese). | |
19 | 乔文友, 余安远, 杨大伟, 等. 基于前体激波的内转式进气道一体化设计[J]. 航空学报, 2018, 39(10): 122078. |
QIAO W Y, YU A Y, YANG D W, et al. Integration design of inward-turning inlets based on forebody shock wave[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10): 122078 (in Chinese). | |
20 | SAHEBY E B, HUANG G P, HAYS A. Design of hypersonic forebody with submerged bump[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(9): 3153-3169. |
21 | 吕侦军, 王江峰, 伍贻兆, 等. 多级压缩锥导乘波体设计与分析[J]. 宇航学报, 2015, 36(5): 518-523. |
LYU Z J, WANG J F, WU Y Z, et al. Design and analysis of multistage compression cone-derived waverider configuration[J]. Journal of Astronautics, 2015, 36(5): 518-523 (in Chinese). | |
22 | 吕侦军. 水平起降高超声速运载器气动布局设计技术研究[D]. 南京: 南京航空航天大学, 2015. |
LYU Z J. Research on aerodynamic configuration design technology of horizontal takeoff and landing hypersonic launch vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015 (in Chinese). | |
23 | 贺旭照, 倪鸿礼. 密切曲面锥乘波体: 设计方法与性能分析[J]. 力学学报, 2011, 43(6): 1077-1082. |
HE X Z, NI H L. Osculating curved cone (OCC) waverider: Design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082 (in Chinese). | |
24 | 贺旭照, 秦思, 周正, 等. 一种乘波前体进气道的一体化设计及性能分析[J]. 航空动力学报, 2013, 28(6): 1270-1276. |
HE X Z, QIN S, ZHOU Z, et al. Integrated design and performance analysis of waverider forebody and inlet[J]. Journal of Aerospace Power, 2013, 28(6): 1270-1276 (in Chinese). | |
25 | XUE L S, CHENG C, WANG C P, et al. An integration method based on a novel combined flow for aerodynamic configuration of strutjet engine[J]. Chinese Journal of Aeronautics, 2021, 34(9): 156-167. |
26 | LI Y Q, ZHENG X G, SHI C G, et al. Integration of inward-turning inlet with airframe based on dual-waverider concept[J]. Aerospace Science and Technology, 2020, 107: 106266. |
27 | 陈立立. 参数化高超声速巡航飞行器组合布局设计与气动优化分析[D]. 长沙: 国防科技大学, 2019. |
CHEN L L. Combined configuration design and aerodynamic optimization analysis of hypersonic cruise vehicle with parametrization[D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
28 | CHEN L L, GUO Z, DENG X L, et al. Waverider configuration design with variable shock angle[J]. IEEE Access, 2019, 7: 42081-42093. |
29 | 罗文莉, 李道春, 向锦武. 吸气式高超声速飞行器大迎角气动特性分析[J]. 航空学报, 2015, 36(1): 223-231. |
LUO W L, LI D C, XIANG J W. Aerodynamic characteristics analysis of air-breathing hypersonic vehicles at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 223-231 (in Chinese). | |
30 | 陈立立, 郭正, 邓小龙, 等. 一种新型乘波体设计方法研究[J]. 航空工程进展, 2019, 10(5): 673-680, 690. |
CHEN L L, GUO Z, DENG X L, et al. Investigation on a novel waverider design method[J]. Advances in Aeronautical Science and Engineering, 2019, 10(5): 673-680, 690 (in Chinese). | |
31 | ANSYS Inc. FLUENT theory guide[M]. Canonsburg: ANSYS Inc., 2017. |
32 | TAKASHIMA N, LEWIS M J. Navier-Stokes computation of a viscous optimized waverider[J]. Journal of Spacecraft and Rockets, 1994, 31(3): 383-391. |
/
〈 |
|
〉 |