固体力学与飞行器总体设计

基于样本映射与动态Kriging的飞行器离散连续优化方法

  • 李昊达 ,
  • 龙腾 ,
  • 史人赫 ,
  • 叶年辉
展开
  • 1.北京理工大学 宇航学院,北京 100081
    2.北京理工大学 飞行器动力学与控制教育部重点实验室,北京 100081
    3.北京理工大学重庆创新中心,重庆 401121
.E-mail: srenhe@163.com

收稿日期: 2023-03-21

  修回日期: 2023-04-25

  录用日期: 2023-05-26

  网络出版日期: 2023-06-02

基金资助

国家自然科学基金(52272360);北京市自然科学基金(3222019);北京理工大学青年教师学术启动计划(XSQD-202101006);北京理工大学科技创新计划项目(2021CX01013);北京理工大学研究生科研水平和创新能力提升专项计划(2022YCXZ017)

Kriging?based mixed?integer optimization method using sample mapping mechanism for flight vehicle design

  • Haoda LI ,
  • Teng LONG ,
  • Renhe SHI ,
  • Nianhui YE
Expand
  • School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    Key Laboratory of Dynamics and Control of Flight Vehicle of Ministry of Education,Beijing Institute of Technology,Beijing 100081,China
    Beijing Institute of Technology Chongqing Innovation Center,Chongqing 401121,China
E-mail: srenhe@163.com

Received date: 2023-03-21

  Revised date: 2023-04-25

  Accepted date: 2023-05-26

  Online published: 2023-06-02

摘要

针对复杂飞行器系统离散连续混合优化计算成本高、全局收敛性差等问题,提出了一种基于样本映射与动态Kriging的离散连续优化方法(SMDK-DC)。该方法采用Kriging代理模型代替高耗时仿真模型以降低计算成本,并定制一种基于综合曼哈顿距离准则的样本点映射机制,在连续-离散空间内高效生成满足均布性要求的真实样本点。将期望改善度准则与重点采样空间方法相结合,辨识优质新增样本点,持续动态更新Kriging,引导离散连续优化过程快速收敛。标准数值算例测试结果表明,与SOMI、NOMAD等国际同类方法相比,SMDK-DC方法在全局收敛性与鲁棒性方面具有显著优势。使用该方法求解固体火箭发动机多学科设计优化问题,优化方案在满足燃烧室、内弹道等学科约束条件前提下,使得发动机总冲提升12.92%以上,且优化收益较SOMI方法提高1.71%,从而验证了本文工作的有效性与工程实用性。

本文引用格式

李昊达 , 龙腾 , 史人赫 , 叶年辉 . 基于样本映射与动态Kriging的飞行器离散连续优化方法[J]. 航空学报, 2024 , 45(3) : 228726 -228726 . DOI: 10.7527/S1000-6893.2023.28726

Abstract

To deal with the problems of high computational cost and poor global convergence that often exist in discretecontinuous mixed optimization of complex flight vehicle systems, a Sample Mapping and Dynamic Kriging based Discrete-Continuous Mixed Optimization method (SMDK-DC) is proposed. In this method, time-consuming simulation model is replaced by Kriging surrogate model to reduce computational expenses. A sample point mapping mechanism based on generalized Manhattan distance criterion is also proposed to efficiently generate uniformly-distributed real sample points in continuous-discrete domain. Expected improvement criteria is combined with significant sampling space to identify new sample points,update Kriging continuously and dynamically, and guide the rapid convergence of the discrete-continuous optimization process. Benchmark cases show that compared with international methods such as SOMI and NOMAD, SMDK-DC has significant advantages in global convergence and robustness. Finally, SMDK-DC is used for solving a multidisciplinary design optimization problem of solid rocket motor. The method, on the premise of satisfying all the constraints of the combustion chamber and internal ballistic discipline, leads to a total impulse increase of at least 12. 92%, and the optimization yield is 1. 71% higher than that of SOMI, which verifying the effectiveness and engineering practicability of SMDK-DC.

参考文献

1 MORRISON D R, JACOBSON S H, SAUPPE J J, et al. Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning[J]. Discrete Optimization201619: 79-102.
2 LIU W L, GONG Y J, CHEN W N, et al. Coordinated charging scheduling of electric vehicles: A mixed-variable differential evolution approach[J]. IEEE Transactions on Intelligent Transportation Systems202021(12): 5094-5109.
3 HANSEN P, MLADENOVI? N, MORENO PéREZ J A. Variable neighbourhood search: Methods and applications[J]. 4OR20086(4): 319-360.
4 NAKARIYAKUL S, CASASENT D P. Adaptive branch and bound algorithm for selecting optimal features[J]. Pattern Recognition Letters200728(12): 1415-1427.
5 HUSSIEN A G, HASSANIEN A E, HOUSSEIN E H, et al. New binary whale optimization algorithm for discrete optimization problems[J]. Engineering Optimization202052(6): 945-959.
6 LIU Y C, WANG H D. Surrogate-assisted hybrid evolutionary algorithm with local estimation of distribution for expensive mixed-variable optimization problems[J]. Applied Soft Computing2023133: 10995.
7 ABRAMSON M A, AUDET C, CHRISSIS J W, et al. Mesh adaptive direct search algorithms for mixed variable optimization[J]. Optimization Letters20093(1): 35-47.
8 龙腾, 刘建, WANG G G, 等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报201652(14): 79-105.
  LONG T, LIU J, WANG G G, et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering201652(14): 79-105 (in Chinese).
9 SHANOCK L R, BARAN B E, GENTRY W A, et al. Polynomial regression with response surface analysis: A powerful approach for examining moderation and overcoming limitations of difference scores[J]. Journal of Business and Psychology201025(4): 543-554.
10 BUHMANN M D. Radial basis functions: Theory and implementations[M]. Cambridge: Cambridge University Press, 2003.
11 SIMPSON T W, MAUERY T M, KORTE J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal200139: 2233-2241.
12 KLEIJNEN J P C. Kriging metamodeling in simulation: A review[J]. European Journal of Operational Research2009192(3): 707-716.
13 LI J, CHENG J H, SHI J Y, et al. Brief introduction of back propagation (BP) neural network algorithm and its improvement[C]∥ Advances in Computer Science and Information Engineering. Berlin: Springer, 2012: 553-558.
14 LIU Y, ZHAO G, LI G, et al. Analytical robust design optimization based on a hybrid surrogate model by combining polynomial chaos expansion and Gaussian kernel[J]. Structural and Multidisciplinary Optimization202265(11): 335.
15 JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization200123(1): 1-13.
16 LIU B, SUN N, ZHANG Q F, et al. A surrogate model assisted evolutionary algorithm for computationally expensive design optimization problems with discrete variables[C]∥ 2016 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2016: 1650-1657.
17 HOLMSTR?M K, QUTTINEH N H, EDVALL M M. An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization[J]. Optimization and Engineering20089(4): 311-339.
18 ZHENG L, YANG Y P, FU G Q, et al. A surrogate-based optimization method with dynamic adaptation for high-dimensional mixed-integer problems[J]. Swarm and Evolutionary Computation202272: 101099.
19 MüLLER J, SHOEMAKER C A, PICHé R. SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems[J]. Computers & Operations Research201340(5): 1383-1400.
20 JIAO R W, ZENG S Y, LI C H, et al. A complete expected improvement criterion for Gaussian process assisted highly constrained expensive optimization[J]. Information Sciences2019471: 80-96.
21 JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization199813(4): 455-492.
22 PENG L, LIU L, LONG T, et al. Sequential RBF surrogate-based efficient optimization method for engineering design problems with expensive black-box functions[J]. Chinese Journal of Mechanical Engineering201427(6): 1099-1111.
23 PENG L, LIU L, LONG T, et al. Truss structure satellite bus geometry-structure optimization involving mixed variables and expensive models using metamodel-based optimization strategy[C]∥ Proceedings of the 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2014.
24 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报201637(11): 3197-3225.
  HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3197-3225 (in Chinese).
25 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报202041(5): 623344.
  HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica202041(5): 623344 (in Chinese).
26 YU X B, DUAN Y C, LUO W G. A knee-guided algorithm to solve multi-objective economic emission dispatch problem[J]. Energy2022259: 124876.
27 HALSTRUP M. Black-box optimization of mixed discrete-continuous optimization problems[D]. Dortmund: TU Dortmund University, 2016.
28 DATTA D, FIGUEIRA J R. A real-integer-discrete-coded differential evolution[J]. Applied Soft Computing201313(9): 3884-3893.
29 叶年辉, 胡少青, 李宏岩, 等. 考虑性能及成本的固体火箭发动机多学科设计优化[J]. 推进技术202243(7): 75-84.
  YE N H, HU S Q, LI H Y, et al. Multidisciplinary design optimization for solid rocket motor considering performance and cost[J]. Journal of Propulsion Technology202243(7): 75-84 (in Chinese).
30 鲍福廷, 侯晓. 固体火箭发动机设计[M]. 北京: 中国宇航出版社,2016.
  BAO F T, HOU X. Solid rocket motor design [M]. Beijing: China Astronautic Publishing House, 2016 (in Chinese).
31 WU Z P, WANG D H, ZHANG W H, et al. Solid-rocket-motor performance-matching design framework[J]. Journal of Spacecraft and Rockets201754(3): 698-707.
文章导航

/