电子电气工程与控制

GBAS对流层异常完好性监测参数研究

  • 李家祥 ,
  • 程建华 ,
  • 李亮 ,
  • 那志博 ,
  • 贾春
展开
  • 哈尔滨工程大学 智能科学与工程学院,150001
.E-mail: liliang@hrbeu.edu.cn

收稿日期: 2023-04-04

  修回日期: 2023-05-05

  录用日期: 2023-05-30

  网络出版日期: 2023-05-31

基金资助

国家重点研发计划(2021YFB3901300);国家自然科学基金(61773132)

Troposphere anomaly integrity monitoring parameters for GBAS

  • Jiaxiang LI ,
  • Jianhua CHENG ,
  • Liang LI ,
  • Zhibo NA ,
  • Chun JIA
Expand
  • College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin 150001,China

Received date: 2023-04-04

  Revised date: 2023-05-05

  Accepted date: 2023-05-30

  Online published: 2023-05-31

Supported by

National Key Research and Development Program(2021YFB3901300);National Natural Science Foundation of China(61773132)

摘要

地基增强系统(GBAS)服务于与生命安全相关应用时,有必要开展对流层异常监测以保证导航精度和完好性。观测域最大可容忍对流层延迟和对流层异常概率是设计GBAS对流层异常完好性监测体系的关键参数。本文以满足适航需求为基础,实现定位域所需导航性能与观测域所需监测性能之间的转换,基于最差保护原则实现了观测域最大可容忍对流层延迟的量化。欧洲中尺度天气预报中心(ECMWF)2010—2019年的气象数据被用于对流层反演分析,验证了对流层波导异常和非标称对流层延迟2类故障发生概率。使用北斗真实数据和气象数据开展仿真验证,结果表明:为保障GBAS支持的精密进近和着陆服务完好性和可用性,观测域最大可容忍对流层延迟取值范围为0.57~0.92 m(对应下滑角 θ=2.5°~3.5°);沿海地区,对流层波导异常概率处于10%~50%之间,但其对GBAS完好性影响较低;非标称对流层延迟概率保守设置为5.3×10 -3,以保证GBAS完好性。上述仿真结果为对流层异常完好性监测器设计和GBAS完好性监测体系完善提供了重要参考。

本文引用格式

李家祥 , 程建华 , 李亮 , 那志博 , 贾春 . GBAS对流层异常完好性监测参数研究[J]. 航空学报, 2024 , 45(7) : 328817 -328817 . DOI: 10.7527/S1000-6893.2023.28817

Abstract

Troposphere anomaly must be monitored to ensure navigation accuracy and integrity when the Ground-Based Augmentation System (GBAS) provides services for safety-critical applications. The maximum tolerable troposphere delay in measurement domain and the troposphere anomaly probability are the critical parameters for GBAS troposphere anomaly integrity monitors. In this paper, the required navigation performance in the position domain is translated into the required integrity monitoring performance in the measurement domain from an airworthiness perspective. The maximum tolerable troposphere delay in the measurement domain is quantified based on the worst protection principle. The probabilities of troposphere duct anomaly and non-nominal troposphere delay are evaluated using the meteorological data from European Center for Medium-range Weather Forecasts (ECMWF) during 2010-2019. Real BDS data and meteorological data are used to carry out simulation. The experimental results show that to ensure the integrity and availability of precise approach and landing services supported by GBAS, the maximum tolerable troposphere delay in the measurement domain ranges from 0.57 to 0.92 m (corresponding glide angle θ=2.5°- 3.5°). The prior probability of troposphere duct anomaly is between 10% - 50% in most coastal areas, but its impact on the integrity of GBAS is negligible. The prior probability of non-nominal troposphere delay can be conservatively set as 5.3×10 -3 to improve the integrity of GBAS. The results can provide an important reference for the design of troposphere anomaly integrity monitor and the improvement of GBAS integrity monitoring system.

参考文献

1 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009.
  XIE G. Principles of GPS and receiver design[M]. Beijing: Publishing House of Electronics Industry, 2009 (in Chinese).
2 DENG Z G, BENDER M, ZUS F, et al. Validation of tropospheric slant path delays derived from single and dual frequency GPS receivers[J]. Radio Science201146( 6): RS6007.
3 姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报201356( 7): 2218- 2227.
  YAO Y B, HE C Y, ZHANG B, et al. A new global zenith tropospheric delay model GZTD[J]. Chinese Journal of Geophysics201356( 7): 2218- 2227 (in Chinese).
4 章迪. GNSS对流层天顶延迟模型及映射函数研究[J]. 测绘学报202251( 9): 1984.
  ZHANG D. The study of the GNSS tropospheric zenith delay model and mapping function[J]. Acta Geodaetica et Cartographica Sinica202251( 9): 1984 (in Chinese).
5 Konno H. Design of an aircraft landing system using dual-frequency GNSS [D]. Stanford: Stanford University, 2008, 13- 15.
6 喻思琪, 张小红, 郭斐, 等. 卫星导航进近技术进展[J]. 航空学报201940( 3): 022200.
  YU S Q, ZHANG X H, GUO F, et al. Recent advances in precision approach based on GNSS[J]. Acta Aeronautica et Astronautica Sinica201940( 3): 022200 (in Chinese).
7 CHENG J H, LI J X, LI L, et al. Carrier phase-based ionospheric gradient monitor under the mixed Gaussian distribution[J]. Remote Sensing202012( 23): 3915.
8 高利春, 高铭阳, 陈晓芳, 等. 基于SINS/GBAS组合导航的高精度进近着陆导航技术[J]. 系统工程与电子技术202345( 1): 210- 220.
  GAO L C, GAO M Y, CHEN X F, et al. High precision approach-and-landing navigation technology based on SINS/GBAS integrated navigation[J]. Systems Engineering and Electronics202345( 1): 210- 220 (in Chinese).
9 MCGRAW G A. Tropospheric error modeling for high integrity airborne GNSS navigation[C]∥ Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium. Piscataway: IEEE Press, 2012: 158- 166.
10 KHANAFSEH S, VON ENGELN A, PERVAN B, et al. Tropospheric duct anomaly threat model for high integrity and high accuracy navigation[C]∥ Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+2016), ION GNSS+, The International Technical Meeting of the Satellite Division of The Institute of Navigation. Manassas: ION, 2016: 1609- 1616.
11 刘黎军, 夏俊明, 白伟华, 等. 蒸发波导对GNSS海面反射信号有效散射区域的影响[J]. 地球物理学报201962( 2): 499- 507.
  LIU L J, XIA J M, BAI W H, et al. Influence of evaporation duct on the effective scattering region of GNSS reflected signals on the sea surface[J]. Chinese Journal of Geophysics201962( 2): 499- 507 (in Chinese).
12 CHEN B Y, LIU Z Z, WONG W K, et al. Detecting water vapor variability during heavy precipitation events in Hong Kong using the GPS tomographic technique[J]. Journal of Atmospheric and Oceanic Technology201734( 5): 1001- 1019.
13 TUNAL? E, ?ZLüDEMIR M T. GNSS PPP with different troposphere models during severe weather conditions[J]. GPS Solutions201923( 3): 82.
14 辛蒲敏, 王志鹏. 非标称对流层误差对GBAS完好性的影响[J]. 北京航空航天大学学报201743( 9): 1882- 1890.
  XIN P M, WANG Z P. Impact of non-nominal troposphere error on GBAS integrity[J]. Journal of Beijing University of Aeronautics and Astronautics201743( 9): 1882- 1890 (in Chinese).
15 GUILBERT A, MILNER C, MACABIAU C. Characterization of tropospheric gradients for the ground-based augmentation system through the use of numerical weather models[J]. Navigation201764( 4): 475- 493.
16 于耕, 王寒, 赵龙. 非标称对流层误差对地基增强系统完好性的影响[J]. 科学技术与工程201818( 31): 235- 240.
  YU G, WANG H, ZHAO L. The impact of non-nominal troposphere error on ground-based augmentation systems integrity[J]. Science Technology and Engineering201818( 31): 235- 240 (in Chinese).
17 GUILBERT A, MILNER C, MACABIAU C. Troposphere Reassessment in the scope of MC/MF Ground Based Augmentation System (GBAS) [C]∥ Proceedings of the ION 2015 Pacific PNT Meeting. Manassas: ION, 2015: 763- 772.
18 WANG Z P, XIN P M, LI R, et al. A method to reduce non-nominal troposphere error[J]. Sensors201717( 8): 1751.
19 YEH S J, JAN S S. GBAS airport availability simulation tool[J]. GPS Solutions201620( 2): 283- 288.
20 LI L, SHI H D, JIA C, et al. Position-domain integrity risk-based ambiguity validation for the integer bootstrap estimator[J]. GPS Solutions201822( 2): 39.
21 LI L, WANG H, JIA C, et al. Integrity and continuity allocation for the RAIM with multiple constellations[J]. GPS Solutions201721( 4): 1503- 1513.
22 FELUX M, LEE J Y, HOLZAPFEL F. GBAS ground monitoring requirements from an airworthiness perspective[J]. GPS Solutions201519( 3): 393- 401.
23 RIFE J H, PULLEN S P. The impact of measurement biases on availability for category Ⅲ LAAS[J]. Navigation200552( 4): 215- 228.
24 ZHAO Y X, CHENG C, LI L, et al. BDS signal-in-space anomaly probability analysis over the last 6 years[J]. GPS Solutions202125( 2): 49.
25 韩清清, 王利, 罗思龙, 等. ARAIM算法的风险概率优化分配[J]. 测绘学报202150( 12): 1751- 1761.
  HAN Q Q, WANG L, LUO S L, et al. Optimal allocation of risk probability based on ARAIM algorithm[J]. Acta Geodaetica et Cartographica Sinica202150( 12): 1751- 1761 (in Chinese).
26 KHANAFSEH S, JOERGER M, PERVAN B, et al. Accounting for tropospheric anomalies in high integrity and high accuracy positioning applications[C]∥ Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011), Manassas: ION, 2011: 513- 522.
27 HUANG J D, VAN GRAAS F. Comparison of tropospheric decorrelation errors in the presence of severe weather conditions in different areas and over different baseline lengths[J]. Navigation200754( 3): 207- 226.
28 YU S W, LIU Z Z. Tropical cyclone-induced periodical positioning disturbances during the 2017 Hato in the Hong Kong region[J]. GPS Solutions202125( 3): 109.
29 HUANG J D, VAN GRAAS F, COHENOUR C. Characterization of tropospheric spatial decorrelation errors over a 5-km baseline[J]. Navigation200855( 1): 39- 53.
30 Lacey L N. Criteria for approval of category III weather minima for take-off, landing, and rollout: AC 120-28D[R]. Washington, D.C.: FAA, 2009.
31 European Aviation Safety Agency (EASA). Certification specifications for all weather operations, Subpart 1, automatic landing systems (CS-AWO 131) [S]. Brussels: European Aviation Safety Agency, 2003.
32 International Civil Aviation Organization. Ⅱ/Ⅲ development baseline SARPs—draft proposed changes to Annex 10, Volume Ⅰ [S]. Montreal: International Civil Aviation Organization, 2010.
33 SCHUSTER W, OCHIENG W. Harmonisation of category-III precision approach navigation system performance requirements[J]. Journal of Navigation201063( 4): 569- 589.
34 Felux M. Total system performance of GBAS-based automatic landings[D]. München: Technische Universit?t München, 2018, 37- 40.
35 Boeing. Determining the vertical alert limit requirements for a level of GBAS service that is appropriate to support CAT Ⅱ/Ⅲ Operations: D6-83447-4[R]. Chicago: Boeing, 2005.
36 Radio Technical Commission for Aeronautics (RTCA). Minimum operational performance standards for GPS local area augmentation system airborne equipment: RTCA DO-253C[R]. Washington, D.C.: RTCA, 2008.
37 Clark B, Decleene B. Alert limits: Do we need them for CAT Ⅲ? Deriving GBAS requirements for consistency with CAT III operations[C]∥ Proceedings of ION GNSS 2006. Manassas: ION, 2006: 3070– 3081.
38 陈钦明, 宋淑丽, 朱文耀. 亚洲地区ECMWF/NCEP资料计算ZTD的精度分析[J]. 地球物理学报201255( 5): 1541- 1548.
  CHEN Q M, SONG S L, ZHU W Y. An analysis of the accuracy of zenith tropospheric delay calculated from ECMWF/NCEP data over Asian area[J]. Chinese Journal of Geophysics201255( 5): 1541- 1548 (in Chinese).
39 陈权亮, 任景轩, 卞建春, 等. ECMWF和HALOE平流层温度资料对比[J]. 地球物理学报200952( 11): 2698- 2703.
  CHEN Q L, REN J X, BIAN J C, et al. Comparison study on ECMWF and HALOE temperature data in the stratosphere[J]. Chinese Journal of Geophysics200952( 11): 2698- 2703 (in Chinese).
40 Chen Q M, Song S L, Heise S, et al. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China[J]. GPS Solut15: 415– 425.
41 ZHANG Y, WANG Z P. The impact of tropospheric anomalies on sea-based JPALS integrity[J]. Sensors201818( 8): 2579.
42 GREGORIUS T, BLEWITT G. The effect of weather fronts on GPS measurements[J]. GPS World19989: 52- 60.
文章导航

/