电子电气工程与控制

AIS和光学遥感图像引导的星载SAR舰船目标识别网络

  • 王子玲 ,
  • 熊振宇 ,
  • 杨璐铖 ,
  • 杨蕊宁 ,
  • 黄林周
展开
  • 1.海军航空大学 信息融合研究所,烟台 264001
    2.中国人民解放军 91033部队,青岛 266000
    3.重庆市勘测院,重庆 401120
    4.重庆市地理信息和遥感应用中心,重庆 401120
.E-mail: x_zhen_yu@163.com

收稿日期: 2023-03-09

  修回日期: 2023-04-12

  录用日期: 2023-05-30

  网络出版日期: 2023-05-31

基金资助

青年科学基金(62001499);国家自然科学基金(61790554)

Spaceborne SAR ship target recognition network guided by AIS and optical remote sensing images

  • Ziling WANG ,
  • Zhenyu XIONG ,
  • Lucheng YANG ,
  • Ruining YANG ,
  • Linzhou HUANG
Expand
  • 1.Institute of Information Fusion,Naval Aviation University,Yantai 264001,China
    2.No. 91033 Unit of the People’s Liberation Army of China,Qingdao 266000,China
    3.Chongqing Survey Institute,Chongqing 401120,China
    4.Chongqing Geomatics and Remote Sensing Center,Chongqing 401120,China
E-mail: x_zhen_yu@163.com

Received date: 2023-03-09

  Revised date: 2023-04-12

  Accepted date: 2023-05-30

  Online published: 2023-05-31

Supported by

National Science Fund for Young Scholars(62001499);National Natural Science Foundation of China(61790554)

摘要

星载SAR作为全天时、全天候的感知手段广泛应用于海洋目标识别任务中,由于SAR图像分辨率低、难解译、样本不均衡导致现有单一模态目标识别算法识别精度低。提出了一种AIS和光学遥感图像引导的星载SAR舰船目标识别网络,针对不同模态数据特征维度不同导致难度量问题,利用特征迁移模块在保留各自模态独有特征属性前提下将异构特征映射到共同的空间中度量;针对不同模态不同类别数据存在样本不均衡问题,利用异构特征对齐模块充分挖掘不同模态的互补信息,以细粒度的方式进一步对齐不同模态的异构特征,同时将各个模态的判别性特征作为先验信息迁移至SAR图像模态中。实验部分利用AIS历史数据和光学遥感数据集作为辅助信息,在2个公开的SAR图像舰船目标数据集中进行测试,实验结果表明所提算法通过迁移不同模态信息,有效提升了SAR图像舰船目标的识别准确率。

本文引用格式

王子玲 , 熊振宇 , 杨璐铖 , 杨蕊宁 , 黄林周 . AIS和光学遥感图像引导的星载SAR舰船目标识别网络[J]. 航空学报, 2024 , 45(2) : 328672 -328672 . DOI: 10.7527/S1000-6893.2023.28672

Abstract

Spaceborne SAR is widely used in marine target recognition tasks as an all-season and all-weather sensing means. Due to the low resolution, difficult interpretation and uneven samples of SAR images, the existing single-mode target recognition algorithms have low recognition accuracy. In this paper, a spaceborne SAR ship target recognition network guided by AIS and optical remote sensing images is proposed. To overcome the difficulty caused by different feature dimensions of different modal data, the heterogeneous features are mapped into the common space measurement by using the feature migration module on the premise of preserving the unique feature attributes of each modal. For the problem of sample imbalance in different modes and different categories of data, the heterogeneous feature alignment module is used to fully mine the complementary information of different modes, further align the heterogeneous features of different modes in a fine-grained way, and migrate the discriminant features of each mode as a priori information to SAR image modes. In the experimental part, AIS historical data and optical remote sensing data set are used as auxiliary information on two public SAR image ship target data sets. The experimental results show that the network proposed can effectively improve the recognition accuracy of ship targets in SAR images by fusing different modal information.

参考文献

1 AKBARIZADEH G. A new statistical-based kurtosis wavelet energy feature for texture recognition of SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing201250(11): 4358-4368.
2 TIRANDAZ Z, AKBARIZADEH G. A two-phase algorithm based on kurtosis curvelet energy and unsupervised spectral regression for segmentation of SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing20169(3): 1244-1264.
3 XING X W, JI K F, ZOU H X, et al. Ship classification in TerraSAR-X images with feature space based sparse representation[J]. IEEE Geoscience and Remote Sensing Letters201310(6): 1562-1566.
4 LIN H P, SONG S L, YANG J A. Ship classification based on MSHOG feature and task-driven dictionary learning with structured incoherent constraints in SAR images[J]. Remote Sensing201810(2): 190.
5 孙秀一, 胡绍海, 马晓乐. 基于无监督深度学习的红外与可见光图像融合[J]. 航空学报202243(S1): 726938.
  SUN X Y, HU S H, MA X L. Infrared and visible image fusion based on unsupervised deep learning[J]. Acta Aeronautica et Astronautica Sinica202243(S1): 726938 (in Chinese).
6 李红光, 于若男, 丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报202142(7): 024691.
  LI H G, YU R N, DING W R. Research development of small object traching based on deep learning[J]. Acta Aeronautica et Astronautica Sinica202142(7): 024691 (in Chinese).
7 ZHANG T W, ZHANG X L, KE X, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 1-22.
8 HE J L, CHANG W L, WANG F P, et al. Group bilinear CNNs for dual-polarized SAR ship classification[J]. IEEE Geoscience and Remote Sensing Letters202219: 1-5.
9 ZHENG H, HU Z G, LIU J J, et al. MetaBoost: A novel heterogeneous DCNNs ensemble network with two-stage filtration for SAR ship classification[J]. IEEE Geoscience and Remote Sensing Letters202219: 1-5.
10 SALERNO E. Using low-resolution SAR scattering features for ship classification[J]. IEEE Geoscience and Remote Sensing Letters202219: 1-4.
11 ZHANG T W, ZHANG X L. Squeeze-and-excitation Laplacian pyramid network with dual-polarization feature fusion for ship classification in SAR images[J]. IEEE Geoscience and Remote Sensing Letters202219: 1-5.
12 XIONG W, XIONG Z Y, ZHANG Y, et al. A deep cross-modality hashing network for SAR and optical remote sensing images retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing202013: 5284-5296.
13 SUN Y X, FENG S S, YE Y M, et al. Multisensor fusion and explicit semantic preserving-based deep hashing for cross-modal remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 1-14.
14 LANG H T, WU S W, XU Y J. Ship classification in SAR images improved by AIS knowledge transfer[J]. IEEE Geoscience and Remote Sensing Letters201815(3): 439-443.
15 LANG H T, YANG G A, LI C N, et al. Multisource heterogeneous transfer learning via feature augmentation for ship classification in SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 1-14.
16 HOU X Y, AO W, SONG Q, et al. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition[J]. Science China Information Sciences202063(4): 140303.
17 ZHAN J, ZHANG T F, YU Y. Multi-source heterogeneous data aggregation method based on adversarial domain adaptation[C]∥ 2021 China Automation Congress (CAC). Piscataway: IEEE Press, 2022: 4856-4861.
18 RODGER M, GUIDA R. Classification-aided SAR and AIS data fusion for space-based maritime surveillance[J]. Remote Sensing202013(1): 104.
19 SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.
20 HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 770-778.
21 HUANG L Q, LIU B, LI B Y, et al. OpenSARShip: A dataset dedicated to sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing201811(1): 195-208.
22 MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research20089(8): 2579–2605.
23 HOFFMAN J, RODNER E, DONAHUE J, et al. Efficient learning of domain-invariant image representations[DB/OL]. arXiv preprint: 1301.3224, 2013.
24 LI W, DUAN L X, XU D, et al. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201436(6): 1134-1148.
25 TSAI Y H H, YEH Y R, WANG Y C F. Learning cross-domain landmarks for heterogeneous domain adaptation[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 5081-5090.
26 WANG C, MAHADEVAN S. Heterogeneous domain adaptation using manifold alignment[C]∥ Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. New York: ACM, 2011: 1541-1546.
27 ESKANDAR G, MARSDEN R A, PANDIYAN P, et al. An unsupervised domain adaptive approach for multimodal 2D object detection in adverse weather conditions[C]∥ 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2022: 10865-10872.
文章导航

/