直升机中减三相流金属屑末可达性
收稿日期: 2023-02-02
修回日期: 2023-04-21
录用日期: 2023-05-24
网络出版日期: 2023-05-31
基金资助
国家自然科学基金(52075241);国家科技重大专项(J2019-Ⅲ-0023-0067);直升机传动技术重点实验室基金(HTL-A-21G05)
Accessibility of metal particles in three-phase flow of helicopter intermediate gearbox
Received date: 2023-02-02
Revised date: 2023-04-21
Accepted date: 2023-05-24
Online published: 2023-05-31
Supported by
National Natural Science Foundation of China(52075241);National Science and Technology Major Project (J2019-Ⅲ-0023-0067);National Key Laboratory of Science and Technology on Helicopter Transmission Fund(HTL-A-21G05)
直升机中间减速器(简称“中减”)在飞溅润滑下运转,轴承会因润滑不充分或磨损产生金属屑末,若油池底部的金属屑末信号器无法及时吸附报警则会导致直升机出现故障。为此,基于CFD理论,应用Fluent18.2软件建立中减固-液-气三相流模型,应用RNG k-ɛ湍流模型及动网格技术,基于欧拉-拉格朗日耦合计算方法,采用VOF-DPM耦合模型仿真计算并分析金属屑末的可达性程度,且与试验获得了良好的一致性。结果表明,金属屑末在刚射入机匣内部时以其自身的运动状态为主导,在齿轮将润滑油完全搅动后以齿轮的运动状态为主导,并且运动的随机性与无序性极大,碰到机匣壁面反弹后会发生轨迹突变;所有金属屑末在机匣内均围绕齿轮有离心运动的趋势,且金属屑末的平均速度与距齿轮的距离呈非线性负相关;金属屑末在机匣内的可达性较弱,会在导油管的凹槽与回油孔口沉积,导致直升机无法达到实时报警监测,需对金属屑末易沉积的机匣结构进行改进。
陆凤霞 , 韦坤 , 王春雷 , 鲍和云 , 朱如鹏 . 直升机中减三相流金属屑末可达性[J]. 航空学报, 2024 , 45(1) : 128524 -128524 . DOI: 10.7527/S1000-6893.2023.28524
The helicopter intermediate gearbox operates under splash lubrication, and the bearing will produce metal particles due to insufficient lubrication or wear. If the metal particles signal at the bottom of the gearbox fails to absorb and alarm in time, it will lead to the helicopter failure. Therefore, based on Computational Fluid Dynamics (CFD) theory, this paper established the solid-liquid-gas three-phase flow model of the intermediate gearbox, using Fluent 18.2 software. Based on the Euler-Lagrange coupling calculation method, the accessibility of metal particles was calculated and analyzed by applying the RNG k-ɛ turbulence model and dynamic grids and the VOF-DPM coupling model simulation, which achieved good consistency with tests. The results show that the motion of the metal particles is mainly dominated by their own state upon initial entry into casing. After the gear completely stirs the lubricating oil, the motion state of the gear dominates, and the randomness and disorder of the movement are fairly great. The trajectory will abruptly change after bouncing off the casing wall. All metal particles in the gearbox tend to move centrifugally around the gear, and the average velocity of the metal particles shows a nonlinear negative correlation with the distance from the gear. The accessibility of metal particles in the gearbox is weak, and the metal particles will deposit in the grooves and return holes of the oil guide pipe, which prevents the helicopter from achieving real-time alarm monitoring. The gearbox structure, where the metal particles are easy to deposit, should be improved.
1 | 吴亮. 含固体颗粒的两相流界面变化的数值研究: DEM-VOF方法的实现[D]. 天津: 天津大学, 2018. |
WU L. Development of a DEM-VOF model for the turbulent free-surface flows with particle[D]. Tianjin: Tianjin University, 2018 (in Chinese). | |
2 | 孙茂川. 多相流系统中微颗粒的运动特性研究[D]. 成都: 西南交通大学, 2017. |
SUN M C. The study of micro-partical movement characteristics in multiphase flow system[D]. Chengdu: Southwest Jiaotong University, 2017 (in Chinese). | |
3 | 赵海鸣, 谢信, 廖小乐, 等. 径向直叶片风机三相除尘数值模拟[J]. 合肥工业大学学报(自然科学版), 2017, 40(8): 1020-1025. |
ZHAO H M, XIE X, LIAO X L, et al. Numerical simulation of three-phase dust removal in radial-straight-blade fan[J]. Journal of Hefei University of Technology (Natural Science), 2017, 40(8): 1020-1025 (in Chinese). | |
4 | 夏铖. 基于CFD-DEM方法的两级混流泵内部粗颗粒固液两相流特性研究[D]. 镇江: 江苏大学, 2019. |
XIA C. Study on solid-liquid two-phase flow characteristics of coarse particles in two-stage mixed-flow pump based on CFD-DEM method[D].Zhenjiang: Jiangsu University, 2019 (in Chinese). | |
5 | YU J C, LUO X T, WANG B, et al. Analysis of gas-liquid-solid three-phase flows in hydrocyclones through a coupled method of volume of fluid and discrete element model[J]. Journal of Fluids Engineering, 2021, 143(11): 111402. |
6 | XIAO Y L, TIAN Y F, WANG Q, et al. Numerical investigation of lime particle motion in steelmaking BOF process[J]. JOM, 2021, 73(9): 2733-2740. |
7 | ZHANG T, ZENG X J, GUO J C, et al. Numerical simulation on oil-water-particle flows in complex fractures of fractured-vuggy carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109413. |
8 | WANG H K, YU Y, YU J X, et al. Numerical simulation of the erosion of pipe bends considering fluid-induced stress and surface scar evolution[J]. Wear, 2019, 440-441: 203043. |
9 | ZHANG Y, CHANG Q, GE W. Coupling DPM with DNS for dynamic interphase force evaluation[J]. Chemical Engineering Science, 2021, 231: 116238. |
10 | YANG Y, WEN C. CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation[J]. Separation and Purification Technology, 2017, 174: 22-28. |
11 | SONG C M, PEI B B, JIANG M T, et al. Numerical analysis of forces exerted on particles in cyclone separators[J]. Powder Technology, 2016, 294: 437-448. |
12 | LI L C, XU B. CFD simulation of gas-liquid floating particles mixing in an agitated vessel[J]. Chemical Industry and Chemical Engineering Quarterly, 2017, 23(3): 377-389. |
13 | MITHUN M G, KOUKOUVINIS P, KARATHANASSIS I K, et al. Numerical simulation of three-phase flow in an external gear pump using immersed boundary approach[J]. Applied Mathematical Modelling, 2019, 72: 682-699. |
14 | GALLETTI C, RUM A, TURCHI V, et al. Numerical analysis of flow field and particle motion in a dynamic cyclonic selector[J]. Advanced Powder Technology, 2020, 31(3): 1264-1273. |
15 | YANG K, HU W H. Simulation on debris particles conveying process in lubricant between gear engagement[J]. Wear, 2019, 426-427: 1391-1398. |
16 | HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
17 | GOSMAN A D, LOANNIDES E. Aspects of computer simulation of liquid-fueled combustors[J]. Journal of Energy, 1983, 7(6): 482-490. |
18 | MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193. |
19 | 陆凤霞, 王孟, 王春雷, 等. 直升机中减飞溅润滑流场分析与优化方法[J]. 航空学报, 2020, 41(11): 123659. |
LU F X, WANG M, WANG C L, et al. Analysis and optimization method for flow field of intermediate gearbox splash lubrication in helicopters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123659 (in Chinese). | |
20 | LEMFELD F, FRANA K, UNGER J. Numerical simulation of unsteady oil flows in the gearboxes[J]. Journal of Applied Science in the Thermodynamics and Fluid Mechanics, 2007, 1(1): 1-5. |
21 | LIN Y H, HU Z H, XIONG C Q, et al. Research of flow field simulation for lubrication system and effect evaluation on a 7-speed dual clutch transmission[C]∥Proceedings of the FISITA 2012 World Automotive Congress. Berlin: Springer, 2013: 285-298. |
22 | MOSHAMMER T, MAYR F, KARGL K, et al. Simulation of oil flow in gear box housing[C]∥SAE World Congress & Exhibition. Detroit: SAE, 2006. |
23 | GORLA C, CONCLI F, STAHL K, et al. Hydraulic losses of a gearbox: CFD analysis and experiments[J]. Tribology International, 2013, 66: 337-344. |
/
〈 |
|
〉 |