固体力学与飞行器总体设计

2.5D机织浅交弯联复合材料数字单元建模分析

  • 王宏越 ,
  • 王兵 ,
  • 方国东 ,
  • 孟松鹤
展开
  • 哈尔滨工业大学 特种环境复合材料技术国家级重点实验室,哈尔滨 150001
.E-mail: mengsh@hit.edu.cn

收稿日期: 2022-05-20

  修回日期: 2022-06-20

  录用日期: 2022-07-21

  网络出版日期: 2022-08-03

基金资助

国家自然科学基金(12090034);中国博士后科学基金(2021M701009);黑龙江省自然科学基金(YQ2021A004)

Digital element modelling and analysis of 2.5D woven shallow cross bending composites

  • Hongyue WANG ,
  • Bing WANG ,
  • Guodong FANG ,
  • Songhe MENG
Expand
  • National Key Laboratory of Science and Technology on Advanced Composites in Special Environments,Harbin Institute of Technology,Harbin 150001,China
E-mail: mengsh@hit.edu.cn

Received date: 2022-05-20

  Revised date: 2022-06-20

  Accepted date: 2022-07-21

  Online published: 2022-08-03

Supported by

National Natural Science Foundation of China(12090034);China Postdoctoral Science Foundation(2021M701009);Natural Science Foundation of Heilongjiang Province of China(YQ2021A004)

摘要

2.5D机织浅交弯联复合材料具有优良的力学性能及结构整体性,现已广泛应用于航空航天结构中,正确表征材料内部发生挤压或偏转变形的纤维结构形态是从微细观角度研究材料性能的关键。数字单元法是模拟材料内部纤维束形态的有效途径,但得到的纤维束形态依赖于选取的仿真参数。基于2.5D机织浅交弯联SiO2f/SiO2复合材料的Micro-CT观测,利用ABAQUS软件建立了材料的数字单元有限元模型,施加温度载荷及边界约束,模拟织物变形过程,并且提取织物变形后的数字单元特征信息,结合纤维束中心路经及横截面形状离散算法得到纤维束的结构形态。通过分析选取的单元类型、数字单元赋予的弹性性能、单元数、摩擦系数对模拟结果的影响,确定选取模拟参数的主要原则,得到了能反映该材料纱线变形特征的几何模型,并且与Micro-CT观测结果吻合。该方法具有普适性,可指导类似织物复合材料的数字单元建模。

本文引用格式

王宏越 , 王兵 , 方国东 , 孟松鹤 . 2.5D机织浅交弯联复合材料数字单元建模分析[J]. 航空学报, 2023 , 44(9) : 227478 -227478 . DOI: 10.7527/S1000-6893.2023.27478

Abstract

2.5D woven shallow cross bending composites have been widely used in aerospace structures because of their excellent mechanical properties and structural integrity. Correctly characterizing the fiber structure with extrusion or deflection deformation is the key to studying the materials properties in the micro- and meso-scale. The digital element method is an effective way to simulate the internal fiber bundle shape of the woven composites; however, the obtained results depend on the selection of the simulation parameters. Based on the Micro Computed Tomography(Micro-CT) observation of 2.5D woven shallow cross bending SiO2f/ SiO2 composites, a digital element finite element model of the materials is established using the Abaqus software. The temperature load and boundary constraints are applied to the simulation of the fabric deformation process, and the digital element characteristic information after fabric deformation is extracted. Combining the central path and cross-section shape discretization algorithm of the fiber bundles, we obtain the structural shape of the fiber bundles. Analysis of the influences of the selected element type, the elastic properties of the digital element, the number of elements and the friction coefficient on the simulation results determines the main selection principles of the simulation parameters. A geometric model that can reflect the yarn deformation characteristics of the woven composites is obtained, which is consistent with the CT observation results. This method is universal and can guide the digital element modelling of similar fabric composites.

参考文献

1 赵陈伟, 毛军逵, 屠泽灿, 等. 纤维增韧陶瓷基复合材料热端部件的热分析方法现状和展望[J]. 航空学报202142(6): 024126.
  ZHAO C W, MAO J K, TU Z C, et al. Thermal analysis methods for high-temperature ceramic matrix composite components: Review and prospect[J]. Acta Aeronautica et Astronautica Sinica202142(6): 024126 (in Chinese).
2 GLASS D. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]∥15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008: 2682.
3 汪星明, 邢誉峰. 三维编织复合材料研究进展[J]. 航空学报201031(5): 914-927.
  WANG X M, XING Y F. Developments in research on 3D braided composites[J]. Acta Aeronautica et Astronautica Sinica201031(5): 914-927 (in Chinese).
4 关天茹. 2.5D编织石英/SiO2陶瓷基复合材料细观模型构建与实验验证[D]. 南京: 南京航空航天大学, 2012.
  GUAN T R. Micro geometry and mechanical model and experimental study of 2.5D braided quartz/SiO2 ceramic matrix composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
5 KARAMOV R, MARTULLI L M, KERSCHBAUM M, et al. Micro-CT based structure tensor analysis of fibre orientation in random fibre composites versus high-fidelity fibre identification methods[J]. Composite Structures2020235: 111818.
6 MEHDIKHANI M, STRAUMIT I, GORBATIKH L, et al. Detailed characterization of voids in multidirectional carbon fiber/epoxy composite laminates using X-ray micro-computed tomography[J]. Composites Part A: Applied Science and Manufacturing2019125: 105532.
7 MADRA A, CAUSSE P, TROCHU F, et al. Stochastic characterization of textile reinforcements in composites based on X-ray microtomographic scans[J]. Composite Structures2019224: 111031.
8 SHERBURN M. Geometric and mechanical modelling of textiles[D]. Nottingham: The University of Nottingham, 2007.
9 LIN H, BROWN L P, LONG A C. Modelling and simulating textile structures using TexGen[J]. Advanced Materials Research2011331: 44-47.
10 VERPOEST I, LOMOVE S V Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis[J]. Composites Science and Technology200565(15-16): 2563-2574.
11 BLACKLOCK M, BALE H, BEGLEY M, et al. Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary Model[J]. Journal of the Mechanics and Physics of Solids201260(3): 451-470.
12 RINALDI R G, BLACKLOCK M, BALE H, et al. Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations[J]. Journal of the Mechanics and Physics of Solids201260(8): 1561-1581.
13 STRAUMIT I, LOMOV S V, WEVERS M. Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data[J]. Composites Part A: Applied Science and Manufacturing201569: 150-158.
14 FANG G D, CHEN C H, YUAN S G, et al. Micro-tomography based geometry modeling of three-dimensional braided composites[J]. Applied Composite Materials201825(3): 469-483.
15 HUANG W, CAUSSE P, BRAILOVSKI V, et al. Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT Aided Geometric Modeling[J]. Composites Part A: Applied Science and Manufacturing2019124: 105481.
16 MARTíN-HERRERO J, GERMAIN C H. Microstructure reconstruction of fibrous C/C composites from X-ray microtomography[J]. Carbon200745(6): 1242-1253.
17 YAMAMOTO S, MATSUOKA T. A method for dynamic simulation of rigid and flexible fibers in a flow field[J]. The Journal of Chemical Physics199398(1): 644-650.
18 WIEST J M, WEDGEWOOD L E, BIRD R B. On coil-stretch transitions in dilute polymer solutions[J]. The Journal of Chemical Physics198990(1): 587-594.
19 LIU Y Z, XUE Y. Some aspects of research on mechanics of thin elastic rod[J]. Journal of Physics: Conference Series2013448: 012001.
20 WANG Y Q, SUN X K. Digital-element simulation of textile processes[J]. Composites Science and Technology200161(2): 311-319.
21 ZHOU G M, SUN X K, WANG Y Q. Multi-chain digital element analysis in textile mechanics[J]. Composites Science and Technology200464(2): 239-244.
22 MIAO Y Y, ZHOU E, WANG Y Q, et al. Mechanics of textile composites: micro-geometry[J]. Composites Science and Technology200868(7-8): 1671-1678.
23 HUANG L J, WANG Y Q, MIAO Y Y, et al. Dynamic relaxation approach with periodic boundary conditions in determining the 3-D woven textile micro-geometry[J]. Composite Structures2013106: 417-425.
24 GREEN S D, LONG A C, SAID B S F EL, et al. Numerical modelling of 3D woven preform deformations[J]. Composite Structures2014108: 747-756.
25 GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures2014118: 284-293.
26 SAID B EL, GREEN S D, HALLETT S R. Kinematic modelling of 3D woven fabric deformation for structural scale features[J]. Composites Part A: Applied Science and Manufacturing201457: 95-107.
27 SAID B EL, IVANOV D, LONG A C, et al. Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation[J]. Journal of the Mechanics and Physics of Solids201688: 50-71.
28 DURVILLE D. Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[J]. International Journal of Material Forming20103(2): 1241-1251.
29 LIU C, XIE J B, SUN Y, et al. Micro-scale modeling of textile composites based on the virtual fiber embedded models[J]. Composite Structures2019230: 111552.
30 BERGOU M, WARDETZKY M, ROBINSON S, et al. Discrete elastic rods[C]∥SIGGRAPH '08: ACM SIGGRAPH 2008 papers. New York: ACM, 2008, doi: 10.1145/1360612.1360662 .
文章导航

/