飞机在积水跑道起降过程的溅水雾化研究进展
收稿日期: 2023-04-21
修回日期: 2023-05-15
录用日期: 2023-05-22
网络出版日期: 2023-05-26
基金资助
国家自然科学基金(12272024)
Review of aircraft-generated spray and atomization during take-off and landing on a water-contaminated runway
Received date: 2023-04-21
Revised date: 2023-05-15
Accepted date: 2023-05-22
Online published: 2023-05-26
Supported by
National Natural Science Foundation of China(12272024)
飞机在积水跑道滑跑过程中的溅水雾化问题将直接影响飞机的起降安全性。根据形成机理的差异,溅水雾化过程可分为2个主要阶段,即起落架轮胎喷溅图型的形成和喷溅形成的水雾在空气流场中的运动。本文首先总结了针对溅水问题的起落架模型试验、飞机滑行试验等研究,并对基于试验数据建立的工程估算方法进行介绍。由于溅水雾化的物理机制复杂,且试验成本高、定量评估困难,因此对于这一问题的数值研究得到了极大的关注与重视。随后,介绍了模拟积水跑道上轮胎运动过程的多种数值方法,其中光滑粒子流体动力学方法(SPH)在模拟溅水问题上具有显著优势,论述了基于SPH方法的大量数值研究。水雾流场运动是一种强非线性的气液两相流问题,阐述了基于离散相模型(DPM)的水雾流场特性数值研究进展,介绍了一种基于SPH方法、结合DPM模型的有限体积法发展而来的飞机溅水雾化数值计算平台。此外,对翻边轮胎等溅水抑制措施研究进行了相关说明。最后,对溅水雾化问题研究的未来发展方向进行了讨论与总结。
刘沛清 , 葛晨晖 , 屈秋林 . 飞机在积水跑道起降过程的溅水雾化研究进展[J]. 航空学报, 2023 , 44(21) : 528911 -528911 . DOI: 10.7527/S1000-6893.2023.28911
The spray and atomization generated by the aircraft during taxiing on a water-contaminated runway will directly affect the safety of take-off and landing. According to the difference of formation mechanism, the process of spray and atomization can be divided into two main stages, namely the formation of tire spray pattern and the movement of water mist in the air flow field. First, this paper summarizes the landing gear model tests and the aircraft taxiing tests, and introduces the engineering estimation method based on the experimental results. Due to the complex physical mechanism involved, high test cost and difficulty in quantitative evaluation, the numerical study on this problem has received great attention. Second, a variety of numerical methods for simulating a tire rolling on a water-contaminated runway are illustrated. Among them, the Smoothed Particle Hydrodynamics (SPH) has a significant advantage in simulating water spray, based on which considerable studies are discussed. This paper describes the progress of numerical studies on water mist flow field based on the Discrete Phase Model (DPM). A numerical simulation platform for aircraft spray and atomization based on SPH and the Finite VolumeMethod combined with DPH is introduced. In addition, the research on the anti-splashing measures such as the chined tire is summarized. Finally, the future research directions of aircraft-generated spray and atomization are discussed and concluded in this paper.
1 | SAFETY A. Statistical summary of commercial jet airplane accidents[R]. Chicago: Boeing Commercial Airplanes, 2011. |
2 | JIANG Y. Review on flight performance certification standard for wet and contaminated runway[J]. Procedia Engineering, 2011, 17: 7-12. |
3 | DAUGHERTY R H, STUBBS S M. Measurements of flow rate and trajectory of aircraft tire-generated water spray: NASA-TP-2718 [R]. Washington, D.C.: NASA, 1987. |
4 | GOODEN J H M. Engine ingestion as a result of crosswind during take-offs from water contaminated runways: NLR-TP-2013-201 [R]. Amsterdam: NLR, 2013. |
5 | SLATTER N V, MALTBY R L. The measurement of the effects of slush and water on aircraft during take-off: R. & M. No. 3604 [R]. London: HM Stationery Office, 1968. |
6 | FAA. Reduced and derated takeoff thrust (Power) procedures: FAA AC25-13 [S]. New Jersey: FAA, 1988. |
7 | FAA. Water, slush, and snow on the runway: FAA AC91-6A [S]. New Jersey: FAA, 1978. |
8 | JAA. Supplementary performance information for take-off from wet runways and for operations on runways contaminated by standing water, slush, loose snow, compacted snow or ice: JAR-25 AMJ 25X1591 [S]. Hofdrop: JAA, 1993. |
9 | 中国民用航空局. 航空承运人湿跑道和污染跑道运行管理规定: AC-121-FS-33R1 [S]. 北京: 中国民用航空局, 2021. |
Civil Aviation Administration of China. Provisions on the operation management of air carrier wet runway and contaminated runway: AC-121-FS-33R1 [S]. Beijing: Civil Aviation Administration of China, 2021 (in Chinese). | |
10 | 中国民用航空局. 航空发动机适航规定: CCAR-33-R2 [S]. 北京: 中国民用航空局, 2016. |
Civil Aviation Administration of China. Aeroengine airworthiness regulations: CCAR-33-R2 [S]. Beijing: Civil Aviation Administration of China, 2016 (in Chinese). | |
11 | 中国民用航空局. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2016. |
Civil Aviation Administration of China. Airworthiness standards for transport aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2016 (in Chinese). | |
12 | FAA. Flight test guide for certification of transport category airplanes: FAA AC25-7A [S]. New Jersey: FAA, 1998. |
13 | MARTIN C S. Hydrodynamics of tire hydroplaning[J]. Journal of Aircraft, 1967, 4(2): 136-140. |
14 | HORNE W B, JOYNER U T, LELAND T J W. Studies of the retardation force developed on an aircraft tire rolling in slush or water: NASA TN-D-552 [R]. Washington, D. C.: NASA, 1960. |
15 | HORNE W B, DREHER R R. Phenomena of pneumatic tire hydroplaning: NASA TN-D-2056 [R]. Washington, D. C.: NASA, 1963. |
16 | BARRETT R V. Research into slush drag, wheel spray and aquaplaning at Bristol University using small pneumatic tyres: Reports and Memoranda No.3682 [R]. London: University of Bristol, 1970. |
17 | MCCOMB H G, TANNER J A. Topics in landing gear dynamics research at NASA Langley[J]. Journal of Aircraft, 1988, 25(1): 84-93. |
18 | SOMMERS D E, MARCY J F, KLUEG E P, et al. Runway slush effects on the takeoff of a jet transport: Project No. 389 [R]. New Jersey: FAA, 1962. |
19 | CABUT D, MICHARD M, SIMOENS S, et al. Analysis of the water flow inside tire grooves of a rolling car using refraction particle image velocimetry[J]. Physics of Fluids, 2021, 33(3): 032101. |
20 | HERMANGE C, TODOROFF V, BIESSE F, et al. Experimental investigation of the leading parameters influencing the hydroplaning phenomenon[J]. Vehicle System Dynamics, 2022, 60(7): 2375-2392. |
21 | ESDU. Estimation of spray patterns generated from the sides of aircraft tyres running in water or slush: ESDU 83042 [R]. London: IHS ESDU, 1998. |
22 | 王传煌, 崔健勇. 民用飞机的起落架溅水试验[J]. 飞行试验, 1992, 4(2): 36-39. |
WANG C H, CUI J Y. Wheel spray and aquaplaning test of civil aircraft landing gear[J]. Flight Test, 1992, 4(2): 36-39 (in Chinese). | |
23 | 戚学锋, 曾涛. 民用飞机动力装置溅水试验适航验证方法[J]. 航空发动机, 2013, 39(3): 55-58. |
QI X F, ZENG T. Water ingestion certification test method of civil aircraft power system[J]. Aeroengine, 2013, 39(3): 55-58 (in Chinese). | |
24 | 赵海刚, 屈霁云, 马争胜, 等. 运输类飞机动力装置溅水试验技术[J]. 航空动力学报, 2021, 36(12): 2673-2682. |
ZHAO H G, QU J Y, MA Z S, et al. Water ingestion test technical of transport aircraft power system[J]. Journal of Aerospace Power, 2021, 36(12): 2673-2682 (in Chinese). | |
25 | VAN ES G. Braking capabilities on flooded runways: Flight test results obtained with a business jet[C]∥ AIAA Flight Testing Conference. Reston: AIAA, 2017. |
26 | GIESBERTS M K H, GOODEN J H M. Precipitation drag of snow and standing water[C]∥ICAS 2000 Congress. 2000. |
27 | GIESBERTS M K H. Test and evaluation of precipitation drag on an aircraft caused by snow and standing water on a runway: NLR-TP-2001-490 [R]. Amsterdam: NLR, 2001. |
28 | ONG G P, FWA T F. Wet-pavement hydroplaning risk and skid resistance: modeling[J]. Journal of Transportation Engineering, 2007, 133(10): 590-598. |
29 | FWA T F, ONG G P. Wet-pavement hydroplaning risk and skid resistance: Analysis[J]. Journal of Transportation Engineering, 2008, 134(5): 182-190. |
30 | SILLEM A. Feasibility study of a tire hydroplaning simulation in a monolithic finite element code using a coupled Eulerian-Lagrangian method[D]. Delft: Delft University of Technology, 2008. |
31 | VINCENT S, SARTHOU A, CALTAGIRONE J P, et al. Augmented Lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns[J]. Journal of Computational Physics, 2011, 230(4): 956-983. |
32 | ZHU X Y, PANG Y F, YANG J, et al. Numerical analysis of hydroplaning behaviour by using a tire-water-film-runway model[J]. International Journal of Pavement Engineering, 2022, 23(3): 784-800. |
33 | 杨洋, 朱兴一, 赵鸿铎. 基于真实道面模型的机轮滑水行为影响因素[J]. 航空学报, 2022, 43(1): 124813. |
YANG Y, ZHU X Y, ZHAO H D. Aircraft tire hydroplaning behavior based on real texture of surface runway model[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 124813 (in Chinese). | |
34 | 李岳, 宗辉杭, 蔡靖, 等. 飞机轮组滑水行为与道面积水附加阻力[J]. 北京航空航天大学学报, 2023, 49(5): 1099-1107. |
LI Y, ZONG H H, CAI J, et al. Hydroplaning behavior of aircraft wheel group and additional resistance due to accumulated water on pavement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1099-1107 (in Chinese). | |
35 | SETA E, NAKAJIMA Y, KAMEGAWA T, et al. Hydroplaning analysis by FEM and FVM: Effect of tire rolling and tire pattern on hydroplaning[J]. Tire Science and Technology, 2000, 28(3): 140-156. |
36 | OKANO T, KOISHI M. A new computational procedure to predict transient hydroplaning performance of a tire[J]. Tire Science and Technology, 2001, 29(1): 2-22. |
37 | CHO J R, LEE H W, SOHN J S, et al. Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire[J]. European Journal of Mechanics - A/Solids, 2006, 25(6): 914-926. |
38 | CHO J R, LEE H W, YOO W S. A wet-road braking distance estimate utilizing the hydroplaning analysis of patterned tire[J]. International Journal for Numerical Methods in Engineering, 2007, 69(7): 1423-1445. |
39 | NAZARI A, CHEN L, BATTAGLIA F, et al. Prediction of hydroplaning potential using fully coupled finite element-computational fluid dynamics tire models[J]. Journal of Fluids Engineering, 2020, 142(10): 101202. |
40 | MONAGHAN J J. Smoothed particle hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543-574. |
41 | GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389. |
42 | MONAGHAN J J. Particle methods for hydrodynamics[J]. Computer Physics Reports, 1985, 3(2): 71-124. |
43 | GINGOLD R A, MONAGHAN J J. Kernel estimates as a basis for general particle methods in hydrodynamics[J]. Journal of Computational Physics, 1982, 46(3): 429-453. |
44 | LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): An overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25-76. |
45 | YE T, PAN D Y, HUANG C, et al. Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications[J]. Physics of Fluids, 2019, 31(1): 011301. |
46 | LUO M, KHAYYER A, LIN P Z. Particle methods in ocean and coastal engineering[J]. Applied Ocean Research, 2021, 114: 102734. |
47 | QU Q L, ZHANG F, LIU P Q, et al. Numerical simulation of water spray caused by a rolling airplane tire[J]. Journal of Aircraft, 2015, 53(1): 182-188. |
48 | ZHAO K B, LIU P Q, QU Q L, et al. Flow physics and chine control of the water spray generated by an aircraft rigid tire rolling on contaminated runways[J]. Aerospace Science and Technology, 2018, 72: 49-62. |
49 | 赵凯彬. 大型飞机积水跑道机轮溅水雾化数值研究 [D]. 北京: 北京航空航天大学, 2018. |
ZHAO K B. Numerical study of large aircraft tire-generated water spray and engine ingestion on flooded runways[D]. Beijing: Beihang University, 2018 (in Chinese). | |
50 | 孙牧. 光滑粒子流体动力学法在大型飞机滑跑溅水研究中的应用[D]. 北京: 北京航空航天大学, 2014. |
SUN M. Application of smoothed particle hydrodynamics in large aircraft water spray study[D]. Beijing: Beihang University, 2014 (in Chinese). | |
51 | 张凡. 大型飞机机轮溅水机理与抑制方法数值研究 [D]. 北京: 北京航空航天大学, 2015. |
ZHANG F. Numerical study of nose gear water spray mechanism and its restraining method [D]. Beijing: Beihang University, 2015 (in Chinese). | |
52 | QU Q L, LIU T, LIU P Q, et al. Simulation of water spray generated by pneumatic aircraft tire on flooded runway[J]. Journal of Aircraft, 2018, 55(4): 1700-1708. |
53 | HALLQUIST J O, GOUDREAU G L, BENSON D J. Sliding interfaces with contact-impact in large-scale Lagrangian computations[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 51(1-3): 107-137. |
54 | ZHANG Y J, LIU P Q, QU Q L, et al. Characteristics and model of the initial spray caused by an aircraft elastic tire rolling on the water-contaminated runway[J]. Aerospace Science and Technology, 2018, 79: 610-624. |
55 | 张宇佳. 大型飞机弹性机轮溅水雾化机理及其影响数值研究[D]. 北京: 北京航空航天大学, 2019. |
ZHANG Y J. Numerical study on the mechanism and impact of water spray caused by an aircraft elastic tire rolling on the water-contaminated runways[D]. Beijing: Beihang University, 2019 (in Chinese). | |
56 | GUAN X S, XU F, HU M Q, et al. Numerical simulation of water spray generated by aircraft multi-wheels[J]. International Journal of Computational Fluid Dynamics, 2021, 35(1-2): 93-105. |
57 | 徐绯, 李亚南, 高向阳, 等. 机场污染跑道飞机轮胎的溅水问题[J]. 航空学报, 2015, 36(4): 1177-1184. |
XU F, LI Y N, GAO X Y, et al. Water sprays produced by aircraft tyres running in contaminated runway[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1177-1184 (in Chinese). | |
58 | ZHANG X P, XU F, REN X Q, et al. Similarity of spray generated by tire rolling in the water and falling into water[J]. Scientia Sinica (Technologica), 2018, 48(9): 931-938 (in Chinese). |
59 | SAYEGH Z EL, GINDY M EL. Sensitivity analysis of truck tyre hydroplaning speed using FEA-SPH model[J]. International Journal of Vehicle Systems Modelling and Testing, 2017, 12(1/2): 143. |
60 | HERMANGE C, OGER G, LE CHENADEC Y, et al. A 3D SPH-FE coupling for FSI problems and its application to tire hydroplaning simulations on rough ground[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 558-590. |
61 | FAETH G M, HSIANG L P, WU P K. Structure and breakup properties of sprays[J]. International Journal of Multiphase Flow, 1995, 21: 99-127. |
62 | GOODEN J H M. CRspray-Impingement drag calculation of aircraft on water-contaminated runways: NLR-TP-2001-204 [R]. Amsterdam: NLR, 2001. |
63 | GOODEN J H M. The effect of crosswind on engine ingestion during take-offs from water contaminated runways: NLR-TP-2012-277[R]. Amsterdam: NLR, 2012. |
64 | TRAPP L, OLIVEIRA G. Aircraft thrust reverser cascade configuration evaluation through CFD[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
65 | 杨成凤, 郭兆电, 邓文剑. 机轮溅水特性及对进气道吸水的影响[J]. 航空学报, 2018, 39(2): 121453. |
YANG C F, GUO Z D, DENG W J. Characteristic of airplane wheel water spray and its effect on water ingestion of engine inlet[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121453 (in Chinese). | |
66 | 刘沛清, 屈秋林, 盛誉, 等. 大型飞机在积水跑道上滑跑溅水性能数值研究[C]∥第八届全国流体力学学术会议论文摘要集. 2014: 191. |
LIU P Q, QU Q L, SHENG Y, et al. Numerical study on splashing performance of large aircraft taxiing on water-contaminated runway[C]∥The 8th National Conference on Fluid Mechanics. 2014: 191 (in Chinese). | |
67 | ZHAO K B, LIU P Q, QU Q L, et al. Numerical simulation of aircraft tire-generated spray and engine ingestion on flooded runways[J]. Journal of Aircraft, 2017, 54(5): 1840-1848. |
68 | 李少伟. 大型飞机滑跑溅水对发动机进气品质影响的数值研究[D]. 北京: 北京航空航天大学, 2013. |
LI S W. Numerical study of large aircraft water spray and impact on the quality of engine intake[D]. Beijing: Beihang University, 2013 (in Chinese). | |
69 | 盛誉. 大型飞机滑跑喷溅液滴在气流场中运动的数值研究[D]. 北京: 北京航空航天大学, 2014. |
SHENG Y. Numerical study on droplets motions in the airflow during large aircraft taxiing on wet runway [D]. Beijing: Beihang University, 2014 (in Chinese). | |
70 | 林立. 液滴阻力模型的修正及其在大型飞机溅水数值模拟中的应用[D]. 北京: 北京航空航天大学, 2015. |
LIN L. Correction of droplet drag model and application in the numerical study of large aircraft water spray[D]. Beijing: Beihang University, 2015 (in Chinese). | |
71 | QU Q L, MA P C, LIU P Q, et al. Numerical study of transient deformation and drag characteristics of a decelerating droplet[J]. AIAA Journal, 2015, 54(2): 490-505. |
72 | 马平昌. 液滴破碎机理研究及其在飞机溅水雾化数值模拟中的应用[D]. 北京: 北京航空航天大学, 2016. |
MA P C. Study of the secondary breakup mechanism of droplets and application in the numerical study of aircraft water spray[D]. Beijing: Beihang University, 2016 (in Chinese). | |
73 | QU Q L, LIU F L, LIU P Q, et al. Transient deformation and breakup of a droplet in confined shear flow[C]∥Proceedings of the 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
74 | 刘芳麟. 飞机溅水雾化过程中剪切气流对液滴运动的影响数值研究[D]. 北京: 北京航空航天大学, 2018. |
LIU F L. Numerical study of droplet motion in shear flow during aircraft water spray[D]. Beijing: Beihang University, 2018 (in Chinese). | |
75 | QU Q L, GE C H, LIU P Q, et al. Numerical study of radial deformation and energy conversion in head-on collision of two equal-size droplets[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
76 | 葛晨晖. 飞机滑跑溅水过程中液滴碰撞行为和流动机理数值研究[D]. 北京: 北京航空航天大学, 2017. |
GE C H. Numerical study on behavior and flow physics of droplets collision in aircraft splashing[D]. Beijing: Beihang University, 2017 (in Chinese). | |
77 | ZHANG Y J, LIU P Q, QU Q L, et al. Energy conversion during the crown evolution of the drop impact upon films[J]. International Journal of Multiphase Flow, 2019, 115: 40-61. |
78 | ZHANG Y J, LIU P Q, QU Q L, et al. Influence of liquid properties on energy conversion during crown evolution following drop impact upon films[J]. Journal of Fluids Engineering, 2020, 142(1): 011302. |
79 | 刘亚琦. 液滴撞击大型飞机表面产生额外阻力流动机理的数值模拟[D]. 北京: 北京航空航天大学, 2018. |
LIU Y Q. The numerical simulation of the flow mechanism of the droplets impacting on the large aircraft generating extra resistance[D]. Beijing: Beihang University, 2018 (in Chinese). | |
80 | 张元喆. 大型飞机滑跑溅水中液滴撞击液膜冲击力特性研究[D]. 北京: 北京航空航天大学, 2019. |
ZHANG Y Z. A study on the impact force characteristics of the liquid drop impact on the liquid film in the water splashed by a large aircraft during taxiing[D]. Beijing: Beihang University, 2019 (in Chinese). | |
81 | 王协国. 液滴撞击液膜实验研究及对大型飞机滑跑溅水冲击载荷计算修正[D]. 北京: 北京航空航天大学, 2021. |
WANG X G. An experimental study of droplet impacting on liquid film to correct simulation of impact on large aircraft during taxiing spray[D]. Beijing: Beihang University, 2021 (in Chinese). | |
82 | BARRETT R V. A method of improving aircraft ground performance in slush and wet conditions: C.P. No. 1206 [R]. London: University of Bristol, 1971. |
83 | YAGER T J, STUBBS S M, MCCARTY J L. The effect of chine tires on nose gear water-spray characteristics of a twin engine airplane: NASA-TM-X-72695 [R]. Washington, D.C.: NASA, 1975. |
84 | 杨林谦. 弹性轮胎翻边对大型飞机滑跑溅水的抑制效果数值研究[D]. 北京: 北京航空航天大学, 2019. |
YANG L Q. Numerical study on the inhibitory effect of elastic tire chain on water splash of large aircraft[D]. Beijing: Beihang University, 2019 (in Chinese). | |
85 | 徐绯, 任选其, 李亚南, 等. 积水跑道飞机翻边轮胎溅水机理研究[J]. 西北工业大学学报, 2017, 35(4): 615-621. |
XU F, REN X Q, LI Y N, et al. Mechanism of water spray generated by aircraft chine tire running on wet runway[J]. Journal of Northwestern Polytechnical University, 2017, 35(4): 615-621 (in Chinese). | |
86 | 任选其, 徐绯, 张显鹏, 等. 基于SPH/FEM方法的浅水冲击喷溅及其抑制结构研究[J]. 计算力学学报, 2018, 35(6): 769-776. |
REN X Q, XU F, ZHANG X P, et al. Research on the water spray generated by shallow water impact and its suppression structure by using the SPH/FEM method[J]. Chinese Journal of Computational Mechanics, 2018, 35(6): 769-776 (in Chinese). | |
87 | ZHANG X P, XU F, REN X Q, et al. Consideration on aircraft tire spray when running on wet runways[J]. Chinese Journal of Aeronautics, 2020, 33(2): 520-528. |
88 | XU F, REN X Q, ZHANG X P, et al. Decreasing effectiveness of chine tire on contaminated runway at high taxiing speed[J]. Journal of Aircraft, 2019, 57(2): 198-208. |
/
〈 |
|
〉 |