探月自由返回轨道设计的自适应初值Newton-Raphson方法
收稿日期: 2023-03-29
修回日期: 2023-04-26
录用日期: 2023-05-15
网络出版日期: 2023-05-26
基金资助
国家自然科学基金(12072365);载人航天工程科技创新团队
Adaptive initial value Newton-Raphson algorithm for free return orbit design in lunar exploration
Received date: 2023-03-29
Revised date: 2023-04-26
Accepted date: 2023-05-15
Online published: 2023-05-26
Supported by
National Natural Science Foundation of China(12072365);Technology Innovation Team of Manned Space Engineering
自由返回轨道设计是载人月球探测任务轨道方案设计不可忽视的环节之一。现有的自由返回轨道设计求解过程相对繁琐,初值依赖性较强,难以直接进行高精度设计,无法适应大规模快速搜索需求,从而限制了窗口设计、可达域分析等问题的求解效率。针对这些问题,首先,建立了以近月点伪参数为自变量的非线性方程组模型。其次,提出了一种基于初值动态适应的Newton-Raphson算法用于方程组的快速求解。再次,定义了初值优劣性指标和算法优劣性指标用于评判初值的品质以及算法的能力。与序列二次规划算法的仿真结果对比表明,所提方法计算速度得到大幅提升,同时高精度计算的仿真结果显示大规模搜索能力也有显著增强。
关键词: 载人月球探测; 初值动态适应; Newton-Raphson; 自由返回; 大规模搜索
李泽越 , 李海阳 , 杨震 , 彭祺擘 . 探月自由返回轨道设计的自适应初值Newton-Raphson方法[J]. 航空学报, 2023 , 44(15) : 528753 -528753 . DOI: 10.7527/S1000-6893.2023.28753
Free return orbit design is one of the indispensable parts in the orbit scheme design of manned lunar exploration missions. Existing methods for designing free return orbit are relatively complicated, and heavily dependent on initial values, which hinders direct high-precision design and the adaption to large-scale fast search requirements, and thus limits the efficiency of solving problems such as window design and reachable domain analysis. To solve these problems, a model of nonlinear equations with perilune pseudo-parameters as independent variables was first established in this paper. Then, a Newton-Raphson algorithm based on adaptive initial values for fast solution of the equations was proposed. Furthermore, two indexes were defined to evaluate the quality of the initial values and the capability of the algorithm. Compared with the simulation results of Sequential Quadratic Programming algorithm, the calculation speed of the proposed method was significantly improved, and the simulation results of high-precision calculation showed a significant enhancement in large-scale search capability.
1 | ZEA L, PIPER S S, GAIKANI H, et al. Experiment verification test of the Artemis I ‘Deep Space Radiation Genomics’ experiment[J]. Acta Astronautica, 2022, 198: 702-706. |
2 | 贺波勇, 沈红新, 李海阳. 地月转移轨道设计的改进微分校正方法[J]. 国防科技大学学报, 2014, 36(6): 60-64. |
HE B Y, SHEN H X, LI H Y. An improved differential correction method for trans-lunar orbit design[J]. Journal of National University of Defense Technology, 2014, 36(6): 60-64 (in Chinese). | |
3 | 张磊, 谢剑锋, 唐歌实. 绕月自由返回飞行任务的轨道设计方法[J]. 宇航学报, 2014, 35(12): 1388-1395. |
ZHANG L, XIE J F, TANG G S. Method of mission trajectory design for circumlunar free return flight[J].Journal of Astronautics, 2014, 35(12): 1388-1395 (in Chinese). | |
4 | 曹鹏飞, 贺波勇, 彭祺擘, 等. 载人登月绕月自由返回轨道混合-分层优化设计[J]. 宇航学报, 2017, 38(4): 331-337. |
CAO P F, HE B Y, PENG Q B, et al. Hybrid and two-level optimization design of circumlunar free-return trajectory for manned lunar landing mission[J]. Journal of Astronautics, 2017, 38(4): 331-337 (in Chinese). | |
5 | 彭祺擘, 和星吉, 陈天冀, 等. 星历模型下地月自由返回全飞行过程轨道设计[J]. 宇航学报, 2023, 44(1): 43-51. |
PENG Q B, HE X J, CHEN T J, et al. Design of Earth-Moon free return transfer trajectory under ephemeris model during the entire flight process[J]. Journal of Astronautics, 2023, 44 (1): 43-51 (in Chinese). | |
6 | PHO, HUNG K. Improvements of the Newton–Raphson method[J]. Journal of Computational and Applied Mathematics, 2022, 408: 114106. |
7 | MORADIAN H, KIA S. A distributed continuous-time modified Newton–Raphson algorithm[J]. Automatica, 2022, 136: 109886. |
8 | SANAM S M, RAJIV A, CHAND A M, et al. The study of Newton–Raphson basins of convergence in the three-dipole problem[J]. Nonlinear Dynamics, 2022, 107(1): 829-854. |
9 | YANG X, CHENG G, WANG Z. Newton method for computing the adaptation coefficient in the CIE system of mesopic photometry[J]. Color Research & Application, 2022, 47(1): 49-54. |
10 | LYU W, CAI L, HUANG D. Compressed Newton-Raphson method for power flow analysis in DC traction network[J]. IEEE Transactions on Power Systems, 2023, 38(2): 1783-1786. |
11 | 夏存言, 张刚, 耿云海. 共面单脉冲拦截多目标问题[J]. 航空学报, 2022, 43(3): 325093. |
XIA C Y, ZHANG G, GENG Y H. Coplanar multi-target interception with a single impulse [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 325093 (in Chinese). | |
12 | FORMICA G, MILICCHIO F, LACARBONARA W. A Krylov accelerated Newton–Raphson scheme for efficient pseudo-arclength pathfollowing[J]. International Journal of Non-Linear Mechanics, 2022, 145: 104-116. |
13 | LIU Y, LI Z, FAN M. A Newton-Raphson-Based sequential power flow algorithm for hybrid AC/DC microgrids[J]. IEEE Transactions on Industry Applications, 2022, 58(1): 843-854. |
14 | ANDREIS E, FRANZESE V, TOPPUTO F. Onboard orbit determination for Deep-Space CubeSats[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(8): 1466-1480. |
15 | CHOI H, KIM S D, SHIN B. Choice of an initial guess for Newton’s method to solve nonlinear differential equations[J]. Computers & Mathematics with Applications, 2022, 117(C): 69-73. |
16 | CHERIF R, TANG Z, GUYOMARCH F, et al. An improved Newton method based on choosing initial guess applied to scalar formulation in nonlinear magnetostatics[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-4. |
17 | CASELLA F, BACHMANN B. On the choice of initial guesses for the Newton-Raphson algorithm[J]. Applied Mathematics & Computation, 2021, 398(0): 125991. |
18 | 周晚萌. 载人探月序列任务有限推力轨道逆动力学设计方法研究[D]. 长沙:国防科技大学, 2019: 61-62. |
ZHOU W M. Finite thrust orbit design for manned lunar prospecting series mission using inverse dynamics method[D]. Changsha: National University of Defense Technology, 2019: 61-62 (in Chinese). | |
19 | 贺波勇, 李海阳, 周建平. 载人登月绕月自由返回轨道与窗口精确快速设计[J]. 宇航学报, 2016, 37(5): 512-518. |
HE B Y, LI H Y, ZHOU J P. Rapid design of circumlunar free-return high accuracy trajectory and trans-lunar window for manned lunar landing mission[J].Journal of Astronautics, 2016, 37(5): 512-518 (in Chinese). | |
20 | PENG Q B, SHEN H X, LI H Y. Free return orbit design and characteristics analysis for manned lunar mission[J]. Science China Technological Sciences, 2011, 54(12): 3243-3250. |
/
〈 |
|
〉 |