战斗机驾驶舱环境热舒适性仿真与优化
收稿日期: 2023-04-23
修回日期: 2023-05-14
录用日期: 2023-05-22
网络出版日期: 2023-05-24
Simulation and optimization of thermal comfort of fighter cockpit environment
Received date: 2023-04-23
Revised date: 2023-05-14
Accepted date: 2023-05-22
Online published: 2023-05-24
战斗机驾驶舱环境热舒适性是保障飞行员人机工效,确保战斗机发挥最佳作战性能的重要因素。但是,常用预期平均投票数-预期不满意百分数(PMV-PPD)人体热舒适性评价指标无法适用于驾驶舱内极度不均匀流场和温度场环境,驾驶舱环境热舒适性缺乏有效优化设计手段。首先利用STAR-CCM+、TAITherm 2个软件,实现了驾驶舱内气流组织与Fiala人体生理模型和Berkeley热舒适评价指标的联合仿真功能;进一步以人体热舒适性和温度不均匀性系数为优化指标,采用遗传算法(GA)对驾驶舱多个送风口流量分配进行一定优化设计。与传统非耦合求解方法相比,联合仿真方法可有效提升驾驶舱内飞行员皮肤温度与热舒适性计算精度。与原始设计方案相比,优化后人体周围环境温度不均匀系数改善16%,整体热舒适性提升了0.285,占该档量化表阶梯的14%。同时,优化方案绝大部分局部热感受、热舒适性都有不同程度的改善。其中,头部和颈部改善最大,颈部热感受与热舒适性分别提高了0.55、0.781,分别占该档量化表阶梯的55%、39%。
刘钟琦 , 胡旭阳 , 罗海宁 , 王晓明 , 董素君 . 战斗机驾驶舱环境热舒适性仿真与优化[J]. 航空学报, 2024 , 45(7) : 128919 -128919 . DOI: 10.7527/S1000-6893.2023.28919
The thermal comfort of the fighter cockpit environment is an important factor to ensure the pilot man-machine efficiency and the best combat performance of the fighter. However, the commonly used PMV-PPD human thermal comfort evaluation index cannot be applied to the extremely uneven flow field and temperature field environment in the cockpit, and the thermal comfort of the cockpit environment lacks effective optimization design means. This study first uses STAR-CCM+ and TAITherm software to realize the joint simulation function of air distribution in the cockpit, Fiala human physiological model and Berkeley thermal comfort evaluation model, and then optimizes the human thermal comfort and temperature non-uniformity coefficient. Genetic Algorithm (GA) is used to optimize the flow distribution of multiple air outlets in the cockpit. Compared with the traditional decoupling method, the joint simulation method can effectively improve the calculation accuracy of the skin temperature and thermal comfort of the pilot in the cockpit. Compared with the initial design plan, the temperature non-uniformity coefficient around the human body has improved by 16% after optimization, and the overall thermal comfort has increased by 0.285, accounting for 14% of the quantization scale ladder. Meanwhile, most of the local thermal sensation and thermal comfort of the optimization plan have been improved to varying degrees. Among them, those of the head and neck has improved the most, with the thermal sensation and thermal comfort of the neck increased by 0.55 and 0.781, respectively, accounting for 55% and 39% of the quantization scale ladder, respectively.
1 | ZHOU B Y, DING L, CHEN B, et al. Physiological characteristics and operational performance of pilots in the high temperature and humidity fighter cockpit environments[J]. Sensors, 2021, 21(17): 5798. |
2 | SCHMINDER J, G?RDHAGEN R. A generic simulation model for prediction of thermal conditions and human performance in cockpits[J]. Building and Environment, 2018, 143: 120-129. |
3 | FAN J L, ZHOU Q Y. A review about thermal comfort in aircraft[J]. Journal of Thermal Science, 2019, 28(2): 169-183. |
4 | FANGER P O. Thermal comfort[M]. New York: McGraw-Hill, 1972:1-15. |
5 | SHI X D, CHAO D, ZHANG Y, et al. The study of air supply ways effects on the aircraft cabin thermal environment[C]∥ WANG R, CHEN Z, ZHANG W, et al. Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). Singapore: Springer, 2020: 123-131. |
6 | YAN Y H, LI X R, TAO Y, et al. Numerical investigation of pilots’ micro-environment in an airliner cockpit[J]. Building and Environment, 2022, 217: 109043. |
7 | Kuznetz LH. Analysis of the effects of free stream gas velocity upon astronaut thermal comfort: NASA TM-79823[R]. Washington, D.C.: NASA, 1978. |
8 | 林国华, 袁修干, 杨燕生. 人机环境系统中CFD的研究[J]. 航空学报, 1999, 20(): 22-24. |
LIN G H, YUAN X G, YANG Y S. CFD applications in the MMES industry[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(Sup 1): 22-24 (in Chinese). | |
9 | 沈海峰, 袁修干. 歼击机座舱空气流动和传热的数值模拟与实验[J]. 航空学报, 2009, 30(1): 30-39. |
SHEN H F, YUAN X G. Numerical simulation and experiment on air flow and heat transfer in fighter plane cockpit[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(1): 30-39 (in Chinese). | |
10 | XUE Y, ZHAI Z J, CHEN Q Y. Inverse prediction and optimization of flow control conditions for confined spaces using a CFD-based genetic algorithm[J]. Building and Environment, 2013, 64: 77-84. |
11 | PANG L P, LI P, BAI L Z, et al. Optimization of air distribution mode coupled interior design for civil aircraft cabin[J]. Building and Environment, 2018, 134: 131-145. |
12 | LIU W, DUAN R, CHEN C, et al. Inverse design of the thermal environment in an airliner cabin by use of the CFD-based adjoint method[J]. Energy and Buildings, 2015, 104: 147-155. |
13 | 宁献文, 张利珍, 王浚. 旅客机座舱热舒适动态特性仿真[J]. 航空学报, 2006, 27(4): 551-555. |
NING X W, ZHANG L Z, WANG J. Simulation of dynamic characteristics for airliner cabin thermal comfort[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 551-555 (in Chinese). | |
14 | 孙智, 孙建红, 赵明, 等. 基于改进PMV指标的飞机驾驶舱热舒适性分析[J]. 航空学报, 2015, 36(3): 819-826. |
SUN Z, SUN J H, ZHAO M, et al. Analysis of thermal comfort in aircraft cockpit based on the modified PMV index[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3): 819-826 (in Chinese). | |
15 | 林家泉, 李弯弯. 基于PMV-PPD的地面空调最佳送风速度[J]. 航空学报, 2017, 38(8): 121089. |
LIN J Q, LI W W. Best wind speed of ground air conditioning system based on PMV-PPD[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 121089 (in Chinese). | |
16 | ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments: part I: Local sensation of individual body parts[J]. Building and Environment, 2010, 45(2): 380-388. |
17 | ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part II: local comfort of individual body parts[J]. Building and Environment, 2010, 45(2): 389-398. |
18 | ZHANG H, ARENS E, HUIZENGA C, et al. Thermal sensation and comfort models for non-uniform and transient environments, part III: Whole-body sensation and comfort[J]. Building and Environment, 2010, 45(2): 399-410. |
19 | ZHOU X J, LAI D Y, CHEN Q Y. Thermal sensation model for driver in a passenger car with changing solar radiation[J]. Building and Environment, 2020, 183: 107219. |
20 | LI W J, CHEN J Q, LAN F C, et al. Numerical projection on occupant thermal comfort via dynamic responses to human thermoregulation[J]. International Journal of Automotive Technology, 2022, 23(1): 193-203. |
21 | VOELKER C, ALSAAD H. Simulating the human body’s microclimate using automatic coupling of CFD and an advanced thermoregulation model[J]. Indoor Air, 2018, 28(3): 415-425. |
22 | FIALA D, LOMAS K J, STOHRER M. Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions[J]. International Journal of Biometeorology, 2001, 45(3): 143-159. |
23 | 寿荣中, 何慧姗. 飞行器环境控制[M]. 北京: 北京航空航天大学出版社, 2004: 62-84. |
SHOU R Z, HE H S. Spacecraft optimal control theory and method[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2004: 62-84 (in Chinese). | |
24 | PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm. 1948[J]. Journal of Applied Physiology, 1998, 85(1): 5-34. |
25 | 马越崎. 某型飞机空调性能优化分析及改进[J]. 流体测量与控制, 2022, 3(2): 41-45. |
MA Y Q. Improve and research on the air conditioner of certain aircraft[J]. Fluid Measurement & Control, 2022, 3(2): 41-45 (in Chinese). |
/
〈 |
|
〉 |