飞行力学与制导控制

变形飞行器输出误差受限与输入饱和控制方法

  • 陈浩岚 ,
  • 王鹏 ,
  • 汤国建
展开
  • 国防科技大学 空天科学学院,长沙  410073
.E-mail: wonderful2035@163.com

收稿日期: 2023-03-29

  修回日期: 2023-04-28

  录用日期: 2023-05-19

  网络出版日期: 2023-05-22

Attitude control scheme for morphing vehicles with output error constraints and input saturation

  • Haolan CHEN ,
  • Peng WANG ,
  • Guojian TANG
Expand
  • College of Aerospace Science and Engineering,National University of Defense Technology,Changsha  410073,China

Received date: 2023-03-29

  Revised date: 2023-04-28

  Accepted date: 2023-05-19

  Online published: 2023-05-22

摘要

研究了高超声速变形飞行器在考虑输出误差受限与输入饱和条件下的姿态控制问题。首先建立了考虑不确定性的动力学模型,基于双曲正切函数与辅助系统得到了面向输入饱和的控制系统,并设计了转换误差使系统能在更为宽松的收敛条件下实现输出误差受限控制。然后,基于模糊逻辑系统及有限时间理论设计了模糊干扰观测器(FDO),使系统对干扰的估计误差能在有限时间内收敛至原点。接下来设计了反步法控制系统,并基于Lyapunov稳定性理论证明了在考虑输出误差受限与输入饱和约束下的闭环系统收敛性。最后通过数学仿真验证了所设计方法的有效性。

本文引用格式

陈浩岚 , 王鹏 , 汤国建 . 变形飞行器输出误差受限与输入饱和控制方法[J]. 航空学报, 2023 , 44(15) : 528762 -528762 . DOI: 10.7527/S1000-6893.2023.28762

Abstract

The attitude control problem of hypersonic morphing vehicles considering output error constraints and input saturation is investigated. Firstly, the dynamic model with uncertainties is established, and the input-saturation-oriented control system is derived based on hyperbolic tangent function and auxiliary system. The transformed error is then designed for the system to facilitate output error constraints under more relaxed convergency conditions. Then, the Fuzzy Disturbance Observer (FDO) is designed based on fuzzy logic system and finite-time theory, which enables the estimation error of disturbance converging to the origin in finite time. Subsequently, the back-stepping control scheme is proposed and the convergency of the closed-loop system with output error constraints and input saturation is ensured via Lyapunov synthesis. Finally, numerical simulation results are presented to demonstrate the effectiveness of the designed control scheme.

参考文献

1 LI D C, ZHAO S W, RONCH A DA, et al. A review of modelling and analysis of morphing wings[J]. Progress in Aerospace Sciences2018100: 46-62.
2 WANG X R, MKHOYAN T, MKHOYAN I, et al. Seamless active morphing wing simultaneous gust and maneuver load alleviation[J]. Journal of Guidance, Control, and Dynamics202144(9): 1649-1662.
3 冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报202243(10): 527449.
  RAN M P, WANG C C, LIU H H, et al. Research status and future development of morphing aircraft control technology[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527449 (in Chinese).
4 TEE K P, GE S S, TAY E H. Barrier Lyapunov Functions for the control of output-constrained nonlinear systems[J]. Automatica200945(4): 918-927.
5 WANG Z W, LIANG B, SUN Y C, et al. Adaptive fault-tolerant prescribed-time control for teleoperation systems with position error constraints[J]. IEEE Transactions on Industrial Informatics202016(7): 4889-4899.
6 DAI P, FENG D Z, ZHAO J Q, et al. Asymmetric integral barrier Lyapunov function-based dynamic surface control of a state-constrained morphing waverider with anti-saturation compensator[J]. Aerospace Science and Technology2022131: 107975.
7 LIU W K, WEI Y Y, DUAN G R. Barrier Lyapunov function-based integrated guidance and control with input saturation and state constraints[J]. Aerospace Science and Technology201984: 845-855.
8 BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control200853(9): 2090-2099.
9 WEI C S, CHEN Q F, LIU J, et al. An overview of prescribed performance control and its application to spacecraft attitude system[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2021235(4): 435-447.
10 GUO Z Y, HENRY D, GUO J G, et al. Control for systems with prescribed performance guarantees: An alternative interval theory-based approach[J]. Automatica2022146: 110642.
11 TARBOURIECH S, TURNER M. Anti-windup design: An overview of some recent advances and open problems[J]. IET Control Theory & Applications20093(1): 1-19.
12 郭行, 符文星, 付斌, 等. 吸气式高超声速飞行器巡航段突防弹道规划[J]. 宇航学报201738(3): 287-295.
  GUO H, FU W X, FU B, et al. Penetration trajectory programming for air-breathing hypersonic vehicles during the cruise phase[J]. Journal of Astronautics201738(3): 287-295 (in Chinese).
13 许闯,吴宝林. 输入饱和下多航天器分布式固定时间输出反馈姿态协同控制[J]. 航空学报202344(10): 327465.
  XU C, WU B L. Distributed fixed-time output-feedback attitude consensus control for multiple spacecraft with input saturation[J]. Acta Aeronautica et Astronautica Sinica202344(10): 327465 (in Chinese).
14 CHEN H L, ZHOU J, ZHOU M, et al. Nussbaum gain adaptive control scheme for moving mass reentry hypersonic vehicle with actuator saturation[J]. Aerospace Science and Technology201991: 357-371.
15 MA Y F, WU W, G?RGES D, et al. Event-triggered feedback control for discrete-time piecewise affine systems subject to input saturation[J]. Nonlinear Dynamics201995(3): 2353-2365.
16 BU X W, JIANG B X, FENG Y A. Hypersonic tracking control under actuator saturations via readjusting prescribed performance functions[J]. ISA Transactions2023134: 74-85.
17 QIN H D, CHEN X Y, SUN Y C. Adaptive state-constrained trajectory tracking control of unmanned surface vessel with actuator saturation based on RBFNN and tan-type barrier Lyapunov function[J]. Ocean Engineering2022253: 110966.
18 HU Q L, WANG C L, LI Y, et al. Adaptive control for hypersonic vehicles with time-varying faults[J]. IEEE Transactions on Aerospace and Electronic Systems201854(3): 1442-1455.
19 YAN K, CHEN M, WU Q X, et al. Robust adaptive compensation control for unmanned autonomous helicopter with input saturation and actuator faults[J]. Chinese Journal of Aeronautics201932(10): 2299-2310.
20 董朝阳, 江未来, 王青. 变翼展飞行器平滑切换LPV鲁棒H控制[J]. 宇航学报201536(11): 1270-1278.
  DONG C Y, JIANG W L, WANG Q. Smooth switching LPV robust H control for variable-span vehicle[J]. Journal of Astronautics201536(11): 1270-1278 (in Chinese).
21 曹立佳, 张胜修, 李晓峰, 等. 折叠翼飞行器发射段鲁棒非线性控制系统设计[J]. 航空学报201132(10): 1879-1887.
  CAO L J, ZHANG S X, LI X F, et al. Robust nonlinear control system design for folding-wing aerial vehicles during launching time[J]. Acta Aeronautica et Astronautica Sinica201132(10): 1879-1887 (in Chinese).
22 UTKIN V. On convergence time and disturbance rejection of super-twisting control[J]. IEEE Transactions on Automatic Control201358(8): 2013-2017.
23 CHEN H L, WANG P, TANG G J. Fuzzy disturbance observer based fixed-time sliding mode control for hypersonic morphing vehicles with uncertainties[J]. IEEE Transactions on Aerospace and Electronic Systems2023, PP(99): 1-10.
24 PU Z Q, YUAN R Y, YI J Q, et al. A class of adaptive extended state observers for nonlinear disturbed systems[J]. IEEE Transactions on Industrial Electronics201562(9): 5858-5869.
25 NAKAO M, OHNISHI K, MIYACHI K. A Robust decentralized joint control based on interference estimation[C]∥ Proceedings of 1987 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2003: 326-331.
26 GINOYA D, SHENDGE P D, PHADKE S B. Sliding mode control for mismatched uncertain systems using an extended disturbance observer[J]. IEEE Transactions on Industrial Electronics201461(4): 1983-1992.
27 AL-JODAH A, SHIRINZADEH B, GHAFARIAN M, et al. A fuzzy disturbance observer based control approach for a novel 1-DOF micropositioning mechanism[J]. Mechatronics202065: 102317.
28 梁帅, 杨林, 杨朝旭, 等. 基于Kalman滤波的变体飞行器T-S模糊控制[J]. 航空学报202041(S2): 724274.
  LIANG S, YANG L, YANG Z X, et al. Kalman filter based T-S fuzzy control for morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724274 (in Chinese).
29 BAO C Y, WANG P, TANG G J. Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase[J]. Chinese Journal of Aeronautics202134(5): 535-553.
30 QIAN C J, LIN W. Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization[J]. Systems & Control Letters200142(3): 185-200.
31 ZUO Z Y, TIE L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems[J]. International Journal of Systems Science201647(6): 1366-1375.
32 BAO J L, WANG H Q, XIAOPING LIU P. Adaptive finite-time tracking control for robotic manipulators with funnel boundary[J]. International Journal of Adaptive Control and Signal Processing202034(5): 575-589.
文章导航

/