电磁散射测试的可重构绳系并联支撑机构

  • 柳汀 ,
  • 林麒 ,
  • 刘震 ,
  • 王晓光 ,
  • 吴惠松 ,
  • 许勇刚
展开
  • 1. 厦门大学
    2. 福建省厦门市厦门大学航空系
    3. 上海无线电设备研究院

收稿日期: 2023-03-07

  修回日期: 2023-05-21

  网络出版日期: 2023-05-22

基金资助

国家自然科学基金;国家自然科学基金

Reconfigurable cable-driven parallel support mechanism for electromag-netic scattering test

  • LIU Ting ,
  • LIN Qi ,
  • LIU Zhen ,
  • WANG Xiao-Guang ,
  • WU Hui-Song ,
  • XU Yong-Gang
Expand

Received date: 2023-03-07

  Revised date: 2023-05-21

  Online published: 2023-05-22

Supported by

National Natural Science Foundation of China;National Natural Science Foundation of China

摘要

鉴于电磁散射测试时被测目标物姿态滚转变化的需求,提出一种能同时满足全滚转扫描和其它多种姿态测试要求的可重构绳系并联支撑机构设计方案,并对其进行了理论分析和实验验证。用双回转机构构建可重构绳系并联支撑机构,建立了该机构的运动学模型和静力学模型。根据该机构的结构矩阵,采用蒙特卡罗法,求解其力闭合工作空间,计算得到设计参数下的姿态工作空间,分析了目标物全滚转、俯仰,全滚转、俯仰和偏航两种组合姿态运动状态下,绳长的变化规律和绳拉力的分布情况。进一步地,分别对泡沫转台支架和绳系结构支撑的电磁散射特性进行了测试和分析。最后,分析了某飞机目标物在泡沫转台支架和绳系支撑下的雷达散射截面。结果表明:在8~12GHz频段内,可重构绳系并联支撑机构表现出很好的低散射特性。两种支撑方式下飞机目标雷达散射截面测试误差的绝对值不到1dBsm,相对误差介于±10%。可重构绳系并联支撑机构支撑可拓展电磁散射测试能力,具有良好的工程实际应用前景。

本文引用格式

柳汀 , 林麒 , 刘震 , 王晓光 , 吴惠松 , 许勇刚 . 电磁散射测试的可重构绳系并联支撑机构[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2023.28658

Abstract

In view of the test requirements for electromagnetic scattering test where the rolling attitude of the object needs to be changed, a design scheme of a reconfigurable cable-driven parallel support mechanism is proposed which can meet the requirements of full rolling scanning and other attitude testing simultaneously, and its feasibility is theoreti-cally analyzed and experimentally demonstrated. A reconfiguration strategy with a double rotary mechanism is used to construct a reconfigurable cable-driven parallel support mechanism and the kinematic and static model of the reconfigurable cable-driven parallel support mechanism is derived. Based on the structure matrix of the mechanism, the force closure workspace is solved using the Monte-Carlo method to calculate the attitude workspace for the de-sign parameters. The variation pattern of cable length and the variation characteristics of cable tension are further analyzed for the two composite attitudes motion states of full rolling and pitching, full rolling and pitching and yawing of the target. Further, the electromagnetic scattering characteristics of the foam turntable support and cable structure are tested and analyzed separately. Finally, a comparative analysis of the radar scattering cross section of a aircraft target both on a foam turntable support and supported by the cable-driven parallel support mechanism is carried out. The results indicate that the reconfigurable cable-driven parallel support mechanism shows good low scattering characteristics at 8~ 12 GHz frequency band. Under the two support methods, the absolute value of the test error of aircraft target radar cross section is less than 1dbsm, and the relative error is between ±10%. The reconfigurable cable-driven parallel support mechanism can expand the ability of electromagnetic scattering test, and has a good prospect of engineering application.

参考文献

[1] 肖志河, 高超, 白杨, 等. 飞行器雷达隐身测试评估技术及发展[J]. 北京航空航天大学学报, 2015, 41(10): 1873-1879.
XIAO Z H, GAO C, BAI Y, et al. Aircraft radar stealth test and evaluation technology and progress[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1873-1879.
[2] BERRIE A, WILSON L. Design of target support col-umns using EPS foam[J]. IEEE Antennas and Propaga-tion Magazine, 2003, 45(1): 198-206.
[3] DALLMANN T, HEBERLING D. A semi-analytical expression for the RCS of a frustum-shaped foam target support structure[C]// 2015 9th European Conference on Antennas and Propagation (EuCAP), 2015: 1-5.
[4] BAGGETT M, THOMAS T. Obtaining high quality RCS measurements with a very large foam column[C]// 26th Proceedings of the Antenna Measurement Tech-niques Association, AMTA-2005.
[5] JIAO H J, ZHANG Y D, CHEN W Y. The Light-weight Design of Low RCS Pylon Based on Structural Bionics[J]. Journal of Bionic Engineering. 2010, 7(2): 182-190.
[6] 安大卫, 李志平, 陈五一. 低散射目标支撑金属支架的外形参数优化[J]. 电讯技术, 2015, 55(3): 333- 339.
AN D W, LI Z P, CHEN W Y. Shape optimization of tar-get support low-scattering metal pylons, Telecommunica-tion Engineering, 2015, 55: 333-339.
[7] 唐海正,徐长龙,徐得名. 一种新型目标支架的设计和分析[J]. 微波学报. 2000, 16(4): 434-439.
TANG H Z, XU C L, XU D M. The analysis and design of a novel target supporter[J]. Journal of Microwaves, 2000, 16(4): 434-439.
[8] QIAN S , ZI B , SHANG W W, et al. A review on cable-driven parallel robots[J]. Journal of Mechanical Engi-neering, 2018,31(04):37-47.
[9] 王晓光, 林麒. 风洞试验绳牵引并联支撑技术研究进展[J]. 航空学报, 2018, 39(10): 6-25.
WANG X G, LIN Q. Progress in wire-driven parallel suspension technologies in wind tunnel tests[J]. Acta Aeronauticaet Astronautica Sinica, 2018, 39(10): 6-25.
[10] 游虹,尚伟伟,张彬,等.基于高速视觉的绳索牵引并联机器人轨迹跟踪控制[J].机械工程学报,2019,55(05):19-26.
YOU H , SHANG W W, ZHANG B, et al. Trajectory tracking control of cable-driven parallel robots by using high-speed vision[J]. Journal of Mechanical Engineering, 2019, 55(5): 19-26.
[11] 唐乐为, 唐晓强, 汪劲松, 等. 七索并联对接机构作业空间分析及索力优化设计[J]. 机械工程学报, 2012, 48(21):1-7.
TANG L W, TANG X Q, WANG J S, et al. Workspace analysis and tension optimization design in docking par-allel mechanism driven by seven cables[J]. Journal of Mechanical Engineering, 2012, 48(21):1-7.
[12] CHUI Z W, TANG X Q, HOU S H, et al. Research on Controllable stiffness of Eight Cable Driven Parallel Ro-bots[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2390-2401
[13] LIN J L, WU C Y, CHANG J L. Design and implemen-tation of a multi-degrees-of-freedom cable-driven parallel robot with gripper[J]. International Journal of Advanced Robotic Systems, 2018, 15(5): 1-10.
[14] 郑亚青,林麒,刘雄伟,等. 用于低速风洞飞行器气动导数试验的绳牵引并联支撑系统[J].航空学报, 2009, 30(08): 1549-1554.
ZHENG Y Q, LIN Q, LIU X W, et al. On wire-driven parallel suspension system for static and dynamic deriva-tives of aircraft in low-speed wind tunnels[J]. Acta Aero-nauticaet Astronautica Sinica, 2009, 30(08): 1549-1554.
[15] NAN R D. Five hundred meter aperture spherical radio telescope (FAST). Science in China, 2006, 49(2): 129?148.
[16] 王文利,段宝岩.大射电望远镜FAST的控制与GPS动态检测[J].仪器仪表学报,2001(01):49-53.
WANG W L, DUAN B Y. Large radio telescope Cabin Control system GPS Real time determination[J]. Chinese Journal of Scientific Instrument, 2001(01):49-53.
[17] 黄攀峰,张帆,刘彬彬,等.辐射开环空间绳系机器人编队自旋转速最优控制[J].系统工程与电子技术,2015,37(06):1362-1369.
HUANG P F, ZHANG F, LIU B B, et al. Optimal con-trol of the rotating velocity of hub spoke tethered space robot formation[J]. Systems Engineering and Electronics, 2015,37(06):1362-1369.
[18] 张永德,姜金刚,张舒,等.柔索驱动的玻璃幕墙清洗机器人研制及实验研究[J].仪器仪表学报,2013,34(03):494-501.
ZHANG Y D, JIANG J G, ZHANG S, et al. Develop-ment and experimental study on glass-curtain wall clean-ing robot driven by flexible rope[J]. Chinese Journal of Scientific Instrument, 2013,34(03):494-501.
[19] 王伟方, 唐晓强, 邵珠峰. 八索立式储罐并联机器人设计及性能优化[J]. 机械工程学报, 2016, 52(09): 1-8.
WANG W F, TANG X Q, SHAO Z F. Design and anal-ysis of a wire-driven parallel mechanism for large vertical storage tank[J]. Journal of Mechanical Engineering, 2016, 52(09): 1-8.
[20] 张飞, 张彬, 周烽, 等. 面向自动仓储的绳索牵引并联机器人构型选择与参数优化[J]. 机械工程学报, 2020, 56(1): 1-8.
ZHANG F, ZHANG B, ZHOU F, et al. Configuration selection and parameter optimization of redundantly actu-ated cable-driven parallel robots[J]. Journal of Mechani-cal Engineering, 2020, 56(1): 1-8.
[21] AFLAKIAN A, SAFARYAZDI A, MEHDI T M, et al. Experimental study on the kinematic control of a cable suspended parallel robot for object tracking purpose[J]. Mechatronics, 2018, 50:160-176.
[22] LIN J L, WU C Y, CHANG J L. Design and implemen-tation of a multi-degrees-of-freedom cable-driven parallel robot with gripper[J]. International Journal of Advanced Robotic Systems, 2018, 15(5): 172988141880384.
[23] 冀洋锋. 绳系并联机器人支撑及相关模型风洞试验问题研究[D].厦门大学,2017.
JI Y F. Research on wire-driven parallel robot suspen-sion and the wind tunnel test with related model.[D]. Xiamen University, 2017.
[24] 訾斌, 王炳尧, 刘浩, 等.可重构柔索并联机器人协同避障方法研究[J].仪器仪表学报,2017,38(03):593-601.
ZI B, WANG B Y, LIU H, et al. Study on the collabora-tive obstacle avoidance method for reconfigurable cable driven parallel robot[J]. Chinese Journal of Scientific In-strument, 2017, 38(03): 593-601.
[25] DINH N Q, MARC G. Study of reconfigurable sus-pended cable driven robots for airplane maintenance[C]// In Proceedings of the IEEE International Conference on Intelligent robots and systems, 2014, 1682–1689.
[26] WANG H B, JUN K, KOSUGE K. Exact kinematic modeling and identification of reconfigurable cable-driven robots with dual-pulley cable guiding mecha-nisms[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2):774-784.
[27] HESS D W. Introduction to RCS measurements[C]// Loughborough Antennas and Propagation Conference, 2008, 37-44.
[28] 郭静. 微波暗室目标RCS测试方法的研究与试验[D]. 南京航空航天大学, 2009.
GUO J. Research and Examinations on RCS Measure-ments in Microwave Anechoic Chamber[D]. Nanjing University of Aeronautics and Astronautics, 2009.
文章导航

/