电子电气工程与控制

基于热响应特性的高速飞行器轨迹设计与制导

  • 许昱 ,
  • 贺峥光 ,
  • 薛鹏飞 ,
  • 陈万春 ,
  • 陈峰
展开
  • 1.空间物理重点实验室,北京 100076
    2.中国运载火箭技术研究院,北京 100076
    3.北京航空航天大学 宇航学院,北京 100191
.E-mail: CASCXV1997@163.com

收稿日期: 2023-02-13

  修回日期: 2023-05-04

  录用日期: 2023-05-18

  网络出版日期: 2023-05-22

Trajectory design and guidance for high speed flight vehicle based on thermal response characteristics

  • Yu XU ,
  • Zhengguang HE ,
  • Pengfei XUE ,
  • Wanchun CHEN ,
  • Feng CHEN
Expand
  • 1.Science and Technology on Space Physics Laboratory,Beijing 100076,China
    2.China Academy of Launch Vehicle Technology,Beijing 100076,China
    3.School of Astronautics,Beihang University,Beijing 100191,China
E-mail: CASCXV1997@163.com

Received date: 2023-02-13

  Revised date: 2023-05-04

  Accepted date: 2023-05-18

  Online published: 2023-05-22

摘要

针对传统热约束方式存在表征不合理的问题,通过热响应方程变换和热环境近似拟合,建立包含热响应模型的高速飞行器增广动力学模型,实现以飞行器防隔热层外壁温度和内壁温度作为热约束的目标。针对定常攻角飞行方案存在跳跃高度衰减较快的问题,提出一种高度-速度(H-V)反馈控制的轨迹设计方法,使用高度和速度信息联合调节攻角,实现大空域反复穿梭跳跃飞行,进一步降低高速飞行器防隔热层内壁温度。针对拉偏情况下内壁温度上边界不确定的问题,提出一种具有内壁温度边界线特征的标称轨迹设计方法,使用最严峻的极值拉偏条件作为输入进行设计,实现对高速飞行器防隔热层内壁温度的上边界约束。针对拉偏情况下大空域反复穿梭跳跃飞行轨迹跟踪误差较大的问题,提出一种H-V反馈跟踪的在线制导方法,通过高度和速度偏差信息分别调节倾侧角和攻角,实现对高速飞行器标称轨迹的精确跟踪并满足内壁温度上边界约束,蒙特卡罗仿真表明其具备较好的鲁棒性。

本文引用格式

许昱 , 贺峥光 , 薛鹏飞 , 陈万春 , 陈峰 . 基于热响应特性的高速飞行器轨迹设计与制导[J]. 航空学报, 2023 , 44(22) : 328553 -328553 . DOI: 10.7527/S1000-6893.2023.28553

Abstract

To address the problem of unreasonable representation of traditional thermal constraint, an augmented high speed flight vehicle dynamic model including a thermal response model is established by thermal response equation transformation and thermal environment approximate fitting, so as to realize the thermal constraint by outer and inner wall temperature of high speed flight vehicle thermal insulation layer. To overcome the problem that leaping height attenuates quickly in the flight scheme with constant angle of attack, a trajectory design method is proposed based on Height-Velocity (H-V) feedback control. By adjusting the angle of attack with both height and velocity information, the method can realize reciprocating shuttle and leaping flight in large airspace, and further reduce the inner wall temperature of the thermal insulation layer of high speed flight vehicle. For the uncertainty of the upper boundary of the inner wall temperature under the condition of deviation, a nominal trajectory design method with the characteristics of inner wall temperature boundary is proposed. By using the most severe deviation condition of the extreme value as the input, the upper boundary constraint of the inner wall temperature of the high speed flight vehicle thermal insulation layer is realized.For the problem of large tracking error of reciprocating shuttle and leaping flight trajectory in large airspace under the condition of deviation, an online guidance method is proposed based on H-V feedback tracking. By adjusting the bank angle and the angle of attack respectively with height and velocity deviation information, the method can realize accurate tracking of nominal trajectory and satisfy the inner wall temperature upper boundary constraint. Monte Carlo simulation results show that the guidance method proposed has good robustness.

参考文献

1 朱广生. 世界高超声速机动飞行器技术发展纵览[M]. 北京: 科学出版社, 2018: 1-12.
  ZHU G S. An overview of world hypersonic maneuvering vehicle technology development[M]. Beijing: Science Press, 2018: 1-12 (in Chinese).
2 张利嵩, 俞继军. 高超声速飞行器热防护技术[M]. 北京: 科学出版社, 2021: 1-7.
  ZHANG L S, YU J J. Thermal protection technology of hypersonic vehicle[M]. Beijing: Science Press, 2021: 1-7 (in Chinese).
3 赵吉松, 张建宏, 李爽. 高超声速滑翔飞行器再入轨迹快速、高精度优化[J]. 宇航学报201940(9): 1034-1043.
  ZHAO J S, ZHANG J H, LI S. Rapid and high-accuracy approach for hypersonic glide vehicle reentry trajectory optimization[J]. Journal of Astronautics201940(9): 1034-1043 (in Chinese).
4 XUE S B, LU P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics201033(4): 1273-1281.
5 ZHANG W Q, CHEN W C, YU W B. Entry guidance for high-L/D hypersonic vehicle based on drag-vs-energy profile[J]. ISA Transactions201883: 176-188.
6 张远龙, 谢愈. 滑翔飞行器弹道规划与制导方法综述[J]. 航空学报202041(1): 023377.
  ZHANG Y L, XIE Y. Review of trajectory planning and guidance methods for gliding vehicles[J]. Acta Aeronautica et Astronautica Sinica202041(1): 023377 (in Chinese).
7 桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报202038(4): 641-650.
  GUI Y W, LIU L, WEI D. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aerodynamica Sinica202038(4): 641-650 (in Chinese).
8 贾洲侠, 吴振强, 吴建国, 等. 飞行器气动热与结构传热双向耦合研究[J]. 强度与环境201946(6): 16-23.
  JIA Z X, WU Z Q, WU J G, et al. Study on two-way coupled fluid-structure-thermal analysis for hypersonic vehicles[J]. Structure & Environment Engineering201946(6): 16-23 (in Chinese).
9 ZHANG S T, CHEN F, LIU H. Integrated fluid-thermal-structural analysis for predicting aerothermal environment of hypersonic vehicles: AIAA-2014-1394[R]. Reston: AIAA, 2014.
10 LIU L, DAI G Y, ZENG L, et al. Experimental model design and preliminary numerical verification of fluid-thermal-structural coupling problem[J]. AIAA Journal201957(4): 1715-1724.
11 胥磊, 谷良贤, 龚春林, 等. 高超声速飞行器热防护系统方案快速设计方法[J]. 科学技术与工程201414(14): 107-111, 134.
  XU L, GU L X, GONG C L, et al. Thermal protection system quick design methodology for hypersonic vehicle[J]. Science Technology and Engineering201414(14): 107-111, 134 (in Chinese).
12 张腾飞, 龚春林, 粟华, 等. 基于传热增广模型的轨迹优化与防热结构分析[J]. 系统工程与电子技术202244(3): 929-938.
  ZHANG T F, GONG C L, SU H, et al. Trajectory optimization based on heat-augmented model and analysis of thermal protection structure[J]. Systems Engineering and Electronics202244(3): 929-938 (in Chinese).
13 陈克俊, 刘鲁华, 孟云鹤. 远程火箭飞行动力学与制导[M]. 北京: 国防工业出版社, 2014: 146-200.
  CHEN K J, LIU L H, MENG Y H. Launch vehicle flight dynamics and guidance[M]. Beijing: National Defense Industry Press, 2014: 146-200 (in Chinese).
14 GAO Y, CAI G B, YANG X G, et al. Improved tentacle-based guidance for reentry gliding hypersonic vehicle with no-fly zone constraint[J]. IEEE Access20197: 119246-119258.
15 赵吉松, 谷良贤, 龚春林. 高超声速跳跃-滑翔弹道方案设计及优化[J]. 固体火箭技术200932(2): 123-126.
  ZHAO J S, GU L X, GONG C L. Design and optimization of hypersonic skip-glide trajectory[J]. Journal of Solid Rocket Technology200932(2): 123-126 (in Chinese).
16 AN K, GUO Z Y, HUANG W, et al. Leap trajectory tracking control based on sliding mode theory for hypersonic gliding vehicle[J]. Journal of Zhejiang University-SCIENCE A202223(3): 188-207.
17 许昱, 贺峥光, 薛鹏飞, 等. 基于热响应特性的高速飞行器多约束轨迹优化[J]. 导弹与航天运载技术2022(4): 15-19, 24.
  XU Y, HE Z G, XUE P F, et al. Multiple constraints trajectory optimization for high speed flight vehicle based on thermal response characteristics[J]. Missiles and Space Vehicles2022(4): 15-19, 24 (in Chinese).
18 胡正东, 曹渊, 张士峰, 等. 高超声速跳跃式飞行器弹道特性分析与优化设计[J]. 宇航学报200829(3): 821-825, 872.
  HU Z D, CAO Y, ZHANG S F, et al. Trajectory performance analysis and optimization design for hypersonic skip vehicle[J]. Journal of Astronautics200829(3): 821-825, 872 (in Chinese).
19 CHEN X Q, HOU Z X, LIU J X, et al. Phugoid dynamic characteristic of hypersonic gliding vehicles[J]. Science China Information Sciences201154(3): 542-550.
20 李广华, 张洪波, 汤国建. 高超声速滑翔飞行器典型弹道特性分析[J]. 宇航学报201536(4): 397-403.
  LI G H, ZHANG H B, TANG G J. Typical trajectory characteristics of hypersonic glide vehicle[J]. Journal of Astronautics201536(4): 397-403 (in Chinese).
文章导航

/