多级压气机转子负荷系数对叶片非同步振动的影响
收稿日期: 2023-03-21
修回日期: 2023-04-04
录用日期: 2023-05-16
网络出版日期: 2023-05-18
基金资助
四川省科技计划项目(2021YFG0182);国家自然科学基金(52022009)
Effect of aerodynamic loading coefficient on occurrence of non-synchronous vibration in a multi-stage compressor
Received date: 2023-03-21
Revised date: 2023-04-04
Accepted date: 2023-05-16
Online published: 2023-05-18
Supported by
Sichuan Science and Technology Planning Project(2021YFG0182);National Natural Science Foundation of China(52022009)
通过理论计算分析与试验研究,解释了核心机试验中调节叶片(VSV)异常偏关引起的转子叶片非同步振动(NSV)现象。首先对出现叶片振动的前1.5级压气机进行了全环非定常数值模拟研究。数值结果表明当第1级静叶安装角从偏关2°逐渐调节到偏关6°时,第1级转子叶片负荷逐渐增加,并出现明显的分离流动结构,该流动现象在转子叶片上产生非整数倍转频的压力脉动激励,这是典型的旋转失稳(RI)现象特征。为进一步研究旋转失稳诱发非同步振动与转子气动负荷之间的关联,在6级跨声压气机试验件上开展了系统性的计算与试验研究。通过二维通流计算评估了不同进口导叶/静叶(VIGV/VSV)角度下,第1级转子负荷随转速的变化规律。进而通过6级压气机试验,观察到当第1级静子叶片调整到偏关8°以及第1、第2静子叶片同时调整到偏关4°和偏关3.6°时,第1级转子叶片均出现了非同步振动现象。通过分析第1级转子叶片表面应变的频谱和机匣动态压力脉动的频谱,建立了二者的内在关联。明确了除叶尖径向间隙大外,可调导叶/静叶偏关同样会在转子叶尖形成高负荷,导致叶尖区域流动不稳定进而诱发叶尖旋转失稳现象。研究结果对于多级压气机的设计工作具有重要的指导意义。
程荣辉 , 余华蔚 , 汪松柏 , 杜林 , 孙大坤 , 孙晓峰 . 多级压气机转子负荷系数对叶片非同步振动的影响[J]. 航空学报, 2023 , 44(14) : 628722 -628722 . DOI: 10.7527/S1000-6893.2023.28722
Through theoretical computation, analysis and experimental research, this paper elucidates the Non-Synchronous Vibration (NSV) phenomenon of rotor blades caused by the Variable Stator Vanes (VSV) which are unexpectedly closed from design point in a core engine test. To reveal the underlying mechanism, three-dimensional full-annulus unsteady numerical simulation is initially performed on the first 1.5-stage compressor where blade vibration is observed. The numerical results show evident flow separation at the rotor blade tip as the installation angle of the first-stage stator blade is closed from 2° to 6°, along with the progressively increase of stage loading of the first-stage rotor. Pressure fluctuation peaks are generated at non-integer multiples of rotational frequency by the unsteady vortex shedding, which is recognized as the characteristic of Rotating Instability (RI). Further, the dependence of the occurrence of NSV induced by RI on the stage loading is systematically calculated and experimentally investigated on a 6-stage transonic compressor. Two-dimensional through-flow simulations are performed to estimate the change in the stage loading of the first-stage rotor with rotational speed under different Variable Inlet Guide Vanes/Variable Stator Vanes (VIGV/VSV) angles. Through a 6-stage compressor test, the analysis on the spectra of strain and pressure fluctuations indicates that NSV is excited on the first-stage rotor by RI when the first-stage stator is adjusted to -8°, which increases the stage loading of the first-stage rotor. The NSV is also observed when the first-stage stator and the second-stage stator are adjusted to -4° and -3.6°, simultaneously. The present results clarify that besides large radial tip clearance, the closing angle of VIGV/VSV can also form high loads at the rotor blade tip, leading to flow instability in the blade tip region and then inducing RI. The findings of this research are of significant guidance to the design of a multistage compressor.
1 | 杨明绥, 刘思远, 王德友, 等. 航空发动机压气机声共振现象初探[J]. 航空发动机, 2012, 38(5): 36-42. |
YANG M S, LIU S Y, WANG D Y, et al. Study of acoustic resonance for aeroengine compressors[J]. Aeroengine, 2012, 38(5): 36-42 (in Chinese). | |
2 | BAUMGARTNER M, KAMAIER F, HOURMOUZIADIS J. Non-engine order blade vibration in a high pressure compressor[C]∥12th International Symposium on Air-Breathing Engines. 1995. |
3 | KIELB R E, BARTER J W, THOMAS J P, et al. Blade excitation by aerodynamic instabilities: A compressor blade study[C]∥ Proceedings of ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. New York: ASME, 2009: 399-406. |
4 | JüNGST M, HOLZINGER F, SCHIFFER H, et al. Analysing non-synchronous blade vibrations in a transonic compressor rotor[C]∥11th European Conference on Turbomachinery Fluid Dynamic & Thermodynamics. 2015. |
5 | HOLZINGER F, WARTZEK F, NESTLE M, et al. Self-excited blade vibration experimentally investigated in transonic compressors: Acoustic resonance: GT2015-43618[R]. New York: ASME, 2015. |
6 | FIQUET A L, AUBERT S, BRANDSTETTER C, et al. Acoustic resonance in an axial multistage compressor leading to non-synchronous blade vibration[J]. Journal of Turbomachinery, 2021, 143(9): 091014. |
7 | 武卉, 杨明绥, 王德友, 等. 多动态参数同步测试系统构建及其应用[J]. 航空学报, 2014, 35(2): 391-399. |
WU H, YANG M S, WANG D Y, et al. Construction and application of synchronized test system of multi-dynamic parameters[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 391-399 (in Chinese). | |
8 | 洪志亮, 赵国昌, 杨明绥, 等. 航空发动机压气机内部流体诱发声共振研究进展[J]. 航空学报, 2019, 40(11): 023139. |
HONG Z L, ZHAO G C, YANG M S, et al. Development of flow-induced acoustic resonance in aeroengine compressors[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 023139 (in Chinese). | |
9 | 赵奉同, 景晓东, 沙云东, 等. 压气机内部噪声特征与转子叶片声固耦合机理分析[J]. 航空学报, 2019, 40(5): 122669. |
ZHAO F T, JING X D, SHA Y D, et al. Analysis of noise characteristics and acoustic structure coupling mechanism of rotor blades in compressor[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122669 (in Chinese). | |
10 | ZHU X C, HU P, LIN T, et al. Numerical investigations on non-synchronous vibration and frequency lock-in of low-pressure steam turbine last stage[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2022, 236(4): 647-661. |
11 | IM H, ZHA G C. Investigation of flow instability mechanism causing compressor rotor-blade nonsynchronous vibration[J]. AIAA Journal, 2014, 52(9): 2019-2031. |
12 | IM H S, ZHA G C. Effects of rotor tip clearance on tip clearance flow potentially leading to NSV in an axial compressor[C]∥Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2013: 1383-1394. |
13 | VO H D. Role of tip clearance flow on axial compressor stability[D]. Cambridge: Massachusetts Institute of Technology, 2001. |
14 | KAMEIER F, NEISE W. Experimental study of tip clearance losses and noise in axial turbomachines and their reduction[J]. Journal of Turbomachinery, 1997, 119(3): 460-471. |
15 | KAMEIER F, NEISE W. Rotating blade flow instability as a source of noise in axial turbomachines[J]. Journal of Sound and Vibration, 1997, 203(5): 833-853. |
16 | MAILACH R, SAUER H, VOGELER K. The periodical interaction of the tip clearance flow in the blade rows of axial compressors: 2001-GT-0299[R]. New York: ASME, 2001. |
17 | MAILACH R, LEHMANN I, VOGELER K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery, 2001, 123(3): 453-460. |
18 | LU Y Z, LAD B, VAHDATI M. Transonic fan blade redesign approach to attenuate nonsynchronous vibration[C]∥ Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2021. |
19 | LU Y Z, LAD B, VAHDATI M, et al. Nonsynchronous vibration associated with transonic fan blade untwist[C]∥ Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. New York: ASME, 2019. |
20 | 程荣辉, 雷丕霓, 刘波, 等. 一种工程实用的多级轴流压气机特性二维数值计算方法[J]. 航空动力学报, 2007, 22(6): 955-960. |
CHENG R H, LEI P N, LIU B, et al. A two-dimension numerical method for multi-stage axial compressor performance in engineering applications[J]. Journal of Aerospace Power, 2007, 22(6): 955-960 (in Chinese). |
/
〈 |
|
〉 |