综述

树脂基复合材料在民用航空发动机中的应用与关键技术研究进展

  • 张超 ,
  • 曹勇 ,
  • 赵振强 ,
  • 张海洋 ,
  • 孙建波 ,
  • 王志华 ,
  • 蔚夺魁
展开
  • 1.西北工业大学 民航学院,西安 710072
    2.辽宁省航空发动机冲击动力学重点实验室,沈阳 110042
    3.太原理工大学 机械与运载工程学院,太原 030024
    4.中国航发沈阳发动机研究所,沈阳 110042
    5.航天材料及工艺研究所,北京 100076
.E-mail: yuduokui@163.com

收稿日期: 2023-02-14

  修回日期: 2023-03-07

  录用日期: 2023-05-05

  网络出版日期: 2023-05-18

基金资助

国家自然科学基金(12002286)

Applications and key challenges of polymer composites in civil aero⁃engines: State⁃of⁃art review

  • Chao ZHANG ,
  • Yong CAO ,
  • Zhenqiang ZHAO ,
  • Haiyang ZHANG ,
  • Jianbo SUN ,
  • Zhihua WANG ,
  • Duokui YU
Expand
  • 1.School of Civil Aviation,Northwestern Polytechnical University,Xi’an 710072,China
    2.Liaoning Key Laboratory for Impact Dynamics of Aero Engine,Shenyang 110042,China
    3.College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China
    4.AECC Shenyang Engine Design and Research Institute,Shenyang 110042,China
    5.Aerospace Research Institute of Material and Processing Technology,Beijing 100076,China
E-mail: yuduokui@163.com

Received date: 2023-02-14

  Revised date: 2023-03-07

  Accepted date: 2023-05-05

  Online published: 2023-05-18

Supported by

National Natural Science Foundation of China(12002286)

摘要

纤维增强树脂基复合材料对于改善航空发动机推重比、燃油经济性及节能环保具有重要意义。本文介绍了树脂基复合材料在民用航空发动机上的应用情况,总结了航空发动机复合材料风扇机匣和风扇叶片面临的挑战与关键技术问题,包括复杂曲面预制体设计技术、复合材料异形结构高精度制备技术、复合材料结构多尺度建模与精细化仿真以及复合材料机匣的包容性设计准则等。结合目前研究热点展望了可应用于航空发动机复合材料结构研制的新思路和新技术。

本文引用格式

张超 , 曹勇 , 赵振强 , 张海洋 , 孙建波 , 王志华 , 蔚夺魁 . 树脂基复合材料在民用航空发动机中的应用与关键技术研究进展[J]. 航空学报, 2024 , 45(2) : 28556 -028556 . DOI: 10.7527/S1000-6893.2023.28556

Abstract

Fiber reinforced polymer composites are of great significance for improving the thrust-to-weight ratio, fuel economy and environmental protection of aeroengines. This paper introduces the applications of polymer composites in aero-engine. The key challenges and technologies of composites-based fan case and fan blades including the design technology of preforms with complex shapes, high-precision manufacture technology of special-shaped composite structures, multi-scale and high-fidelity modeling method of composites, and the containment design criteria for composites fan cases are summarized. Drawing on the recent research hotspots, new ideas and technologies for composite aero-engine structures are prospected.

参考文献

1 《航空发动机设计机手册》总编委会. 航空发动机设计手册 第17册: 载荷及机匣承力件强度分析[M]. 北京: 航空工业出版社, 2001.
  Editor-in-Chief of “Aeroengine Design Manual”. Aeroengine design manual Volume 17: Load and strength analysis of case bearing parts[M]. Beijing: Aviation Industry Press, 2001 (in Chinese).
2 NIU M C Y. Composite airframe structures: Practical design information and data[M]. Hong Kong: Conmilit Press, 1992.
3 胡吉永. 纺织结构成型学2: 多维成形[M]. 上海: 东华大学出版社, 2016.
  HU J Y. Textile structure forming 2: Multidimensional forming[M]. Shanghai: Donghua University Press, 2016 (in Chinese).
4 UPADHYAY R, SINHA S. 3.6 GE-90 and derivative fan blade manufacturing design[M]∥ Comprehensive Composite Materials II. Amsterdam: Elsevier, 2018: 180-188.
5 韦鑫, 荆云娟, 杨明杰, 等. 航空发动机风扇叶片预制体研发现状及趋势[J]. 棉纺织技术202048(8): 81-84.
  WEI X, JING Y J, YANG M J, et al. Development status and trend of aeroengine fan blade preform[J]. Cotton Textile Technology202048(8): 81-84 (in Chinese).
6 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报201835(4): 748-759.
  GUAN L X, LI J L, JIAO Y N, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica201835(4): 748-759 (in Chinese).
7 籍永青, 徐颖, 游彦宇. 复合材料机匣周向安装边模拟件强度与损伤分析[J]. 航空发动机202248(1): 54-60.
  JI Y Q, XU Y, YOU Y Y. Analysis of static strength and damage of circumferential mounting flange simulators in composite casing[J]. Aeroengine202248(1): 54-60 (in Chinese).
8 Brasington A, Francis B, Godbold M, et al. A review and framework for modeling methodologies to advance automated fiber placement[J]. Composites Part C: Open Access202310: 100347.
9 FROMM J. Composite fan blades and enclosures for modern commercial turbo fan engines[EB/OL]. (2016-02-17) [2023-04-10]. .
10 GINGER G. Rolls-Royce starts manufacture of world’s largest fan blades, made with composites, for UltraFan demonstrator [EB/OL]. (2020-02-11) [2023-04-10]. .
11 郭军. 纵横双向变厚度三维机织物的研制[D]. 上海: 东华大学, 2016.
  GUO J. Development of 3D woven fabric with gradual thickness change[D]. Shanghai: Donghua University, 2016 (in Chinese).
12 容治军. 2.5D类缎纹织物增强复合材料疲劳特性研究[D]. 天津: 天津工业大学, 2017.
  RONG Z J. Study on fatigue properties of 2.5D satin fabric reinforced composites[D]. Tianjin: Tianjin Polytechnic University, 2017 (in Chinese).
13 张瑜, 程博, 张让威, 等. 复合材料机匣整体翻边拼接结构设计与试验验证[J]. 纤维复合材料201936(2): 34-38, 48.
  ZHANG Y, CHENG B, ZHANG R W, et al. Structure design and experimental verification of integral flanged composite casing[J]. Fiber Composites201936(2): 34-38, 48 (in Chinese).
14 HUANG T, WANG Y L, WANG G. Review of the mechanical properties of a 3D woven composite and its applications[J]. Polymer-Plastics Technology and Engineering201857(8): 740-756.
15 孟祥福, 陈美玉, 明璐. RTM工艺参数对复合材料缺陷控制的影响[J]. 热加工工艺201847(20): 123-125.
  MENG X F, CHEN M Y, MING L. Influence of RTM process parameters on defects of composites[J]. Hot Working Technology201847(20): 123-125 (in Chinese).
16 BROUWER W D, VAN HERPT E C F C, LABORDUS M. Vacuum injection moulding for large structural applications[J]. Composites Part A: Applied Science and Manufacturing200334(6): 551-558.
17 HINDERSMANN A. Confusion about infusion: An overview of infusion processes[J]. Composites Part A: Applied Science and Manufacturing2019126: 105583.
18 HAMIDI Y K, ALTAN M C. Process induced defects in liquid molding processes of composites[J]. International Polymer Processing201732(5): 527-544.
19 王雪明, 李韶亮, 谢富原. 热压罐成型复合材料构件曲率半径对制造缺陷的影响规律[J]. 航空材料学报202040(6): 90-96.
  WANG X M, LI S L, XIE F Y. Influence of curvature radius on manufacturing defect of composite component formed by autoclave[J]. Journal of Aeronautical Materials202040(6): 90-96 (in Chinese).
20 NIELSEN D, PITCHUMANI R. Intelligent model-based control of preform permeation in liquid composite molding processes, with online optimization[J]. Composites Part A: Applied Science and Manufacturing200132(12): 1789-1803.
21 SPOERRE J, ZHANG C, WANG B, et al. Integrated product and process design for resin transfer molded parts[J]. Journal of Composite Materials199832(13): 1244-1272.
22 冯武. RTM工艺缺陷形成机理与控制方法研究[D]. 武汉: 武汉理工大学, 2005.
  FENG W. Study on the defects formation mechanism and control methods in resin transfer molding[D]. Wuhan: Wuhan University of Technology, 2005 (in Chinese).
23 ZHAO S, RODGERS W R, FRIEBERG B, et al. Study of flow-induced fiber in-plane deformation during high pressure resin transfer molding[J]. Journal of Composite Materials202155(15): 2103-2114.
24 刘强, 黄峰, 赵龙, 等. 一种复合材料风扇叶片与金属包边的胶接成型方法: CN113459526B[P]. 2022-06-10.
  LIU Q, HUANG F, ZHAO L, et al. Glue joint forming method for composite material fan blade and metal covered edge: CN113459526B[P]. 2022-06-10 (in Chinese).
25 高晓进, 周金帅. 复合材料叶片包边粘接超声检测方法[J]. 玻璃钢/复合材料2018(8): 102-105.
  GAO X J, ZHOU J S. Ultrasonic testing method for edge bonding of composite blade[J]. Fiber Reinforced Plastics/Composites2018(8): 102-105 (in Chinese).
26 王辉, 黄开, 陈一哲, 等. 一种复合材料叶片金属包边的胶接方法及装置: CN112373052A[P]. 2022-11-29.
  WANG H, HUANG K, CHEN Y Z, et al. Cementing method and device for metal covered edge of composite material blade: CN112373052A[P]. 2022-11-29 (in Chinese).
27 Michael P. Method of bonding a leading edge sheath to a blade body of a fan blade: US8840750B2[P]. 2014-09-23.
28 CAO Y, WANG W Z, WANG J P, et al. Experimental and numerical study on tensile failure behavior of bionic suture joints[J]. Journal of the Mechanical Behavior of Biomedical Materials201992: 40-49.
29 WANG W Z, SUN Y P, LU Y Y, et al. Tensile behavior of bio-inspired hierarchical suture joint with uniform fractal interlocking design[J]. Journal of the Mechanical Behavior of Biomedical Materials2021113: 104137.
30 MILLER S, HANDSCHUH K M, SINNOTT M, et al. Materials, manufacturing, and test development of a composite fan blade leading edge subcomponent for improved impact resistance: NASA/TM—2015-218340[R]. Washington, D.C.: NASA, 2015.
31 刘洋, 王亮, 郭军. 铝包边对复合材料风扇叶片抗鸟撞能力的影响[J]. 兵工学报201839(): 114-120.
  LIU Y, WANG L, GUO J. Infuence of aluminum package edge on bird-stike resistance of composite fan blades of an engine[J]. Acta Armamentarii201839(S1): 114-120 (in Chinese).
32 PRAVEEN S D, TEJAS K S. Impact simulation: comparison of composite jet engine fan blade with and without leading edge reinforcement[J]. International Research Journal of Engineering and Technology20218(8): 1472-1478.
33 SIDDENS A, BAYANDOR J. Multidisciplinary impact damage prognosis methodology for hybrid structural propulsion systems[J]. Computers & Structures2013122: 178-191.
34 李玉龙, 刘会芳. 加载速率对层间断裂韧性的影响[J]. 航空学报201536(8): 2620-2650.
  LI Y L, LIU H F. Loading rate effect on interlaminar fracture toughness[J]. Acta Aeronautica et Astronautica Sinica201536(8): 2620-2650 (in Chinese).
35 吕青泉. 2.5D机织复合材料的动态试验与仿真模拟研究[D]. 西安: 西北工业大学, 2021.
  LV Q Q. Dynamic experiment and numerical simulation study of 2.5D woven composites[J]. Xi’an: Northwestern Polytechnical University2021 (in Chinese).
36 HUANG W, CAUSSE P, BRAILOVSKI V, et al. Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT Aided Geometric Modeling[J]. Composites Part A: Applied Science and Manufacturing2019124: 105481.
37 LOMOV S V, HUYSMANS G, LUO Y, et al. Textile composites: Modelling strategies[J]. Composites Part A: Applied Science and Manufacturing200132(10): 1379-1394.
38 XIA Z H, ZHOU C W, YONG Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures200643(2): 266-278.
39 路怀玉. 2.5维编织复合材料的强度研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
  LU H Y. Strength research of 2.5D braided composites[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese).
40 ZHONG S Y, GUO L C, LIU G, et al. A continuum damage model for three-dimensional woven composites and finite element implementation[J]. Composite Structures2015128: 1-9.
41 胡燕琪. 高速冲击下三维机织复合材料宏细观建模方法研究[D]. 杭州: 浙江大学, 2021.
  HU Y Q. Study on macro-meso modeling method of 3D woven composites under high speed impact[D]. Hangzhou: Zhejiang University, 2021 (in Chinese).
42 ZHAO Z Q, DANG H Y, ZHANG C, et al. A multi-scale modeling framework for impact damage simulation of triaxially braided composites[J]. Composites Part A: Applied Science and Manufacturing2018110: 113-125.
43 SHOKRIEH M M, MOSALMANI R, OMIDI M J. Strain-rate dependent micromechanical method to investigate the strength properties of glass/epoxy composites[J]. Composite Structures2014111: 232-239.
44 YOU H E, YUM Y J. Loading rate effect on mode I interlaminar fracture of carbon/epoxy composite[J]. Journal of Reinforced Plastics and Composites199716(6): 537-549.
45 SUN C T, HAN C. A method for testing interlaminar dynamic fracture toughness of polymeric composites[J]. Composites Part B: Engineering200435(6-8): 647-655.
46 CAO J C, MENG X H, GU J H, et al. Temperature-dependent interlaminar behavior of unidirectional composite laminates: Property determination and mechanism analysis[J]. Polymer Composites202142(8): 3746-3757.
47 ARMENàKAS A E, SCIAMMARELLA C A. Response of glass-fiber-reinforced epoxy specimens to high rates of tensile loading[J]. Experimental Mechanics197313(10): 433-440.
48 WANG Y, XIA Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behaviour of Kevlar fibre[J]. Composites Part A: Applied Science and Manufacturing199930(11): 1251-1257.
49 ZHOU Y X, XIA Y M. In situ strength distribution of carbon fibers in unidirectional metal-matrix composites-wires[J]. Composites Science and Technology200161(14): 2017-2023.
50 RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing[J]. Experimental Mechanics200242(1): 58-64.
51 王维斌, 索涛, 郭亚洲, 等. 电磁霍普金森杆实验技术及研究进展[J]. 力学进展202151(4): 729-754.
  WANG W B, SUO T, GUO Y Z, et al. Experimental technique and research progress of electromagnetic Hopkinson bar[J]. Advances in Mechanics202151(4): 729-754 (in Chinese).
52 LI S G, XU M M, SITNIKOVA E. The formulation of the quadratic failure criterion for transversely isotropic materials: Mathematical and logical considerations[J]. Journal of Composites Science20226(3): 82.
53 LI S G, SITNIKOVA E. A critical review on the rationality of popular failure criteria for composites[J]. Composites Communications20188: 7-13.
54 LI X, MA D Y, LIU H F, et al. Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact[J]. Composite Structures2019207: 727-739.
55 唐旭, 张煜坤, 陈勇. 复合材料风扇叶片高周疲劳薄弱点位置预测[J]. 航空动力学报202136(3): 498-508.
  TANG X, ZHANG Y K, CHEN Y. Prediction of composite fan blade high cycle fatigue weak-link point location[J]. Journal of Aerospace Power202136(3): 498-508 (in Chinese).
56 LIU X D, ZHANG D T, MAO C J, et al. Full-field progressive fatigue damage of 3D5D braided composites with yarn-reduction: Visualization, classification, and quantification[J]. Composites Science and Technology2022218: 109214.
57 SONG J, WEN W D, CUI H T. Fatigue behaviors of 2.5D woven composites at ambient and un-ambient temperatures[J]. Composite Structures2017166: 77-86.
58 RAFIEE R, ABBASI F, MALEKI S. Fatigue analysis of a composite ring: Experimental and theoretical investigations[J]. Journal of Composite Materials202054(26): 4011-4024.
59 翁晶萌. 复合材料多轴疲劳行为与寿命预测模型及方法研究[D]. 南京: 南京航空航天大学, 2019.
  WENG J M. Multiaxial mechanical behavior and fatigue life prediction of composite laminates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
60 Federal Aviation Administration. Special conditions: General electric (GE) aircraft engines model(s) GE90-75B/-85B/-76B turbofan engines: [S]. Washington, D.C.: Federal Aviation Administration, 1995.
61 Federal Aviation Administration. Special conditions: General electric company GEnx model turbofan engines: [S]. Washington, D.C.: Federal Aviation Administration, 2009.
62 张科伟. 复合材料/钛合金板冲击损伤分析与评估方法研究[D]. 南京: 南京航空航天大学, 2011.
  ZHANG K W. Research and assessment method on the impact resistance of titanium and composite plate[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011 (in Chinese).
63 李建华, 刘杰. WJ9发动机涡轮转子叶片包容性研究: CASS 2000-PH-011[R]. 北京: 中国航空学会, 2000.
  LI J H, LIU J. Research on inclusion of WJ9 engine turbine rotor blades: CASS 2000-PH-011[R]. Beijing: Chinese Society of Aeronautics and Astronautics, 2000 (in Chinese).
64 范志强. 航空发动机机匣包容性理论和试验研究[D]. 南京: 南京航空航天大学, 2006.
  FAN Z Q. Theory and experimental study on aeroengine casing containment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese).
65 谢文涛. 航空发动机动力涡轮包容设计与验证技术研究[D]. 上海: 上海交通大学, 2017.
  XIE W T. Containment design and verification technology research on powerturbine of aeroengine[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese).
66 孔維夷, 徐焱, 張璇, 等. 复合材料风扇包容机匣关键性能提升[J]. 航空动力2022(1): 52-54.
  KONG W Y, XU Y, ZHANG X, et al. Key performance improvement of composite fan containment case[J]. Aerospace Power2022(1): 52-54 (in Chinese).
67 宋曼丽. 三维编织/机织复合材料机匣包容性研究[D]. 杭州: 浙江大学, 2020.
  SONG M L. Research on the containment of 3D braided/woven composite casing[D]. Hangzhou: Zhejiang University, 2020 (in Chinese).
68 赵振强. 二维三轴编织复合材料的动态力学行为与失效机理[D]. 西安: 西北工业大学, 2019.
  ZHAO Z Q. Dynamic mechanical behavior and failure mechanism of two-dimensional triaxially braided composites[D]. Xi’an: Northwestern Polytechnical University, 2019 (in Chinese).
69 顾善群, 张代军, 刘燕峰, 等. 聚酰亚胺纤维/双马树脂复合材料抗高速冲击性能[J]. 材料工程202149(1): 119-125.
  GU S Q, ZHANG D J, LIU Y F, et al. Anti-high speed impact properties of polyimide fiber/bismaleimide resin composites[J]. Journal of Materials Engineering202149(1): 119-125 (in Chinese).
70 曹俊超, 孙建波, 曹勇, 等. 混杂纤维增强环氧树脂复合材料高速冲击损伤行为[J]. 复合材料学报202239(10): 4935-4948.
  CAO J C, SUN J B, CAO Y, et al. High-velocity impact damage behavior of hybrid fiber reinforced epoxy composites[J]. Acta Materiae Compositae Sinica202239(10): 4935-4948 (in Chinese).
71 谢克富. 轻质抗高速冲击凯夫拉/聚乙烯纤维混杂复合材料研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
  XIE K F. Research on lightweight high speed impact kevlar/polyethylene fiber hybrid composites[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
72 张辰. 碳/玻单向经编混杂复合材料抗冲击性能及损伤机理研究[D]. 上海: 东华大学, 2021.
  ZHANG C. Study on impact resistance properties and damage mechanism of carbon/glass unidirectional warp knitted hybrid composites[D]. Shanghai: Donghua University, 2021 (in Chinese).
73 唐梦云. 碳-芳纶混杂二维编织复合材料冲击性能实验研究[D]. 天津: 天津工业大学, 2017.
  TANG M Y. Experimental study on impact properties of carbon-aramid hybrid two-dimensional braided composites[D].Tianjin: Tianjin Polytechnic University, 2017 (in Chinese).
74 STEPHEN C, SHIVAMURTHY B, MOURAD A H I, et al. Experimental and finite element study on high-velocity impact resistance and energy absorption of hybrid and non-hybrid fabric reinforced polymer composites[J]. Journal of Materials Research and Technology202218: 5406-5418.
75 曹勇, 张超. 薄层复合材料冲击损伤行为研究进展[J]. 航空学报202243(6): 525323.
  CAO Y, ZHANG C. Impact damage behavior of thin-ply composites: A review[J]. Acta Aeronautica et Astronautica Sinica202243(6): 525323 (in Chinese).
76 HIMANEN L, GEURTS A, FOSTER A S, et al. Data-driven materials science: Status, challenges, and perspectives[J]. Advanced Science20196(21): 1900808.
77 杨航, 李丽坤, 刘道平, 等. 数据驱动梯度结构材料弹塑性本构[J]. 固体力学学报202142(3): 233-240.
  YANG H, LI L K, LIU D P, et al. Data-driven elastoplastic constitutive model for gradient structure materials[J]. Chinese Journal of Solid Mechanics202142(3): 233-240 (in Chinese).
78 LI X, ZHANG C, WU Z. An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials[J]. Structural Engineering and Mechanics202180(5): 539-551.
79 KIRCHDOERFER T, ORTIZ M. Data-driven computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering2016304: 81-101.
80 KIRCHDOERFER T, ORTIZ M. Data driven computing with noisy material data sets[J]. Computer Methods in Applied Mechanics and Engineering2017326: 622-641.
81 KIRCHDOERFER T, ORTIZ M. Data-driven computing in dynamics[J]. International Journal for Numerical Methods in Engineering2018113(11): 1697-1710.
82 BARBOSA A, UPADHYAYA P, IYPE E. Neural network for mechanical property estimation of multilayered laminate composite[J]. Materials Today: Proceedings202028: 982-985.
83 ARTERO-GUERRERO J A, PERNAS-SáNCHEZ J, MARTíN-MONTAL J, et al. The influence of laminate stacking sequence on ballistic limit using a combined experimental/FEM/artificial neural networks (ANN) methodology[J]. Composite Structures2018183: 299-308.
84 TAO C C, ZHANG C, JI H L, et al. Application of neural network to model stiffness degradation for composite laminates under cyclic loadings[J]. Composites Science and Technology2021203: 108573.
文章导航

/