飞行力学与制导控制

考虑视场角约束的碰撞角控制预设性能制导律

  • 李昊键 ,
  • 刘远贺 ,
  • 梁彦刚 ,
  • 黎克波
展开
  • 1.国防科技大学 空天科学学院,长沙  410072
    2.空天任务智能规划与仿真湖南省重点实验室,长沙  410072
.E-mail: likeboreal@nudt.edu.cn

收稿日期: 2023-03-30

  修回日期: 2023-04-24

  录用日期: 2023-05-15

  网络出版日期: 2023-05-17

基金资助

国家自然科学基金(12002370)

Prescribed performance guidance law with field-of-view and impact angle constraints

  • Haojian LI ,
  • Yuanhe LIU ,
  • Yangang LIANG ,
  • Kebo LI
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha  410072,China
    2.Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions,Changsha  410072,China

Received date: 2023-03-30

  Revised date: 2023-04-24

  Accepted date: 2023-05-15

  Online published: 2023-05-17

Supported by

National Natural Science Foundation of China(12002370)

摘要

针对导弹打击非机动目标问题,提出一种基于预设性能控制理论且满足导引头视场角约束的碰撞角控制制导律。首先,设计一种预设时间性能函数,以实现对跟踪误差收敛时间和上下界的直接设置,并通过误差转换,将该性能边界约束下的跟踪误差控制问题转化为无约束稳定控制问题;其次,采用纯比例导引项加偏置项的制导模型,基于最优误差动力学方法设计偏置制导项,以控制转换误差使其有界,并保证跟踪误差总在性能边界内收敛,从而实现终端碰撞角约束;进一步基于所提制导律,对性能函数中的参数进行深入分析,给出合理取值范围;然后考虑导引头视场受限情况以及移动目标场景,分别引入辅助函数和预测命中点概念对制导律进行改进,以实现视场角约束与打击移动目标的拓展。最后通过数值仿真,验证了所提制导律的有效性。

本文引用格式

李昊键 , 刘远贺 , 梁彦刚 , 黎克波 . 考虑视场角约束的碰撞角控制预设性能制导律[J]. 航空学报, 2023 , 44(15) : 528764 -528764 . DOI: 10.7527/S1000-6893.2023.28764

Abstract

To address the problem of guided missiles against non-maneuvering targets, a prescribed performance guidance law with seeker Field-of-View (FOV) and impact angle constraints is proposed. Firstly, a prescribed time performance function is designed to enable direct setting of the convergence time, the upper and lower bounds of the tracking error. Through error transformation, the tracking error control problem under performance boundary constraints is transformed into an unconstrained stable control problem. Secondly, the guidance law is designed as the sum of a pure proportional guidance term and a bias term. The bias term is derived based on the optimal error dynamics method to control the transformation error within a bound, ensure that the tracking error consistently converges within the performance boundary, and ultimately achieve terminal impact angle constraint. Furthermore, based on the proposed guidance law, the in-depth analysis of the parameters in the performance function is conducted, and reasonable parameters ranges are provided. Moreover, considering seeker FOV limitation and moving target scenario, an auxiliary function and the predicted interception point concept are introduced to improve the guidance law respectively, which realize the FOV constraint and the extension of proposed law against moving target. Finally, the effectiveness of the proposed guidance law is verified through numerical simulations.

参考文献

1 KIM M, GRIDER K. Terminal guidance for impact attitude angle constrained flight trajectories[J]. IEEE Transactions on Aerospace and Electronic Systems1973, AES-9(6): 852-859.
2 RYOO C K, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology200614(3): 483-492.
3 LI R, WEN Q Q, TAN W C. Adaptive weighting impact angle optimal guidance law considering seeker’s FOV angle constraints[J]. Journal of Systems Engineering and Electronics201829(1): 142-151.
4 KIM J, CHO S. Optimal guidance law for impact angle and acceleration constraints with time-varying gains[J]. International Journal of Aeronautical and Space Sciences202223(3): 609-621.
5 KUMAR S R, RAO S, GHOSE D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J]. Journal of Guidance, Control, and Dynamics201235(4): 1230-1246.
6 BISWAS B, KUMAR S R, MAITY A. Three-dimensional nonlinear impact angle guidance for maneuvering targets[J]. IFAC-PapersOnLine201851(1): 47-52.
7 KIM H G, KIM H J. All-aspect guidance with impact angle constraint against unknown target maneuver[J]. IEEE Transactions on Aerospace and Electronic Systems201955(2): 830-845.
8 ZHOU Z M, YAO X X. Polynomial guidance law for impact angle control with a seeker look angle limit[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020234(3): 857-870.
9 HU Q L, CAO R H, HAN T, et al. Field-of-view limited guidance with impact angle constraint and feasibility analysis[J]. Aerospace Science and Technology2021114: 106753.
10 FU S N, ZHOU G Q, XIA Q L. A trajectory shaping guidance law with field-of-view angle constraint and terminal limits[J]. Journal of Systems Engineering and Electronics202233(2): 426-437.
11 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报202041(S2): 724277.
  LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraint based on pure proportional navigation[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724277 (in Chinese).
12 SHIN H S, Li K B. An improvement in three-dimensional pure proportional navigation guidance[J]. IEEE Transactions on Aerospace and Electronic Systems202157(5): 3004-3014.
13 LI K B, SHIN H S, TSOURDOS A, et al. Performance of 3-D PPN against arbitrarily maneuvering target for homing phase[J]. IEEE Transactions on Aerospace and Electronic Systems202056(5): 3878-3891.
14 LI K B, SHIN H S, TSOURDOS A, et al. Capturability of 3D PPN against lower-speed maneuvering target for homing phase[J]. IEEE Transactions on Aerospace and Electronic Systems202056(1): 711-722.
15 KIM B S, LEE J G, HAN H S. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems199834(1): 277-288.
16 ERER K S, MERTTOP?UO?LU O. Indirect impact-angle-control against stationary targets using biased pure proportional navigation[J]. Journal of Guidance, Control, and Dynamics201235(2): 700-704.
17 KIM T H, PARK B G, TAHK M J. Bias-shaping method for biased proportional navigation with terminal-angle constraint[J]. Journal of Guidance, Control, and Dynamics201336(6): 1810-1816.
18 闫梁, 赵继广, 沈怀荣, 等. 带末端碰撞角约束的三维联合偏置比例制导律设计[J]. 航空学报201435(7): 1999-2010.
  YAN L, ZHAO J G, SHEN H R, et al. Three-dimensional united biased proportional navigation guidance law for interception of targets with angular constraints [J]. Acta Aeronautica et Astronautica Sinica201435(7): 1999-2010 (in Chinese).
19 XU X Y, LIANG Y. Biased optimal guidance law with specified velocity rendezvous angle constraint[J]. The Aeronautical Journal2015119(1220): 1287-1299.
20 LEE C H, KIM T H, TAHK M J. Interception angle control guidance using proportional navigation with error feedback[J]. Journal of Guidance, Control, and Dynamics201336(5): 1556-1561.
21 HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics201841(7): 1624-1633.
22 李斌, 林德福, 何绍溟, 等. 基于最优误差动力学的时间角度控制制导律[J]. 航空学报201839(11): 322215.
  LI B, LIN D F, HE S M, et al. Time and angle control guidance law based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica201839(11): 322215 (in Chinese).
23 LI H Y, WANG J, HE S M, et al. Nonlinear optimal impact-angle-constrained guidance with large initial heading error[J]. Journal of Guidance, Control, and Dynamics202144(9): 1663-1676.
24 WANG C Y, DONG W, WANG J N, et al. Guidance law design with fixed-time convergent error dynamics[J]. Journal of Guidance, Control, and Dynamics202144(7): 1389-1398.
25 CHENG Z T, WU H, WANG B, et al. Fixed-time convergent guidance law with impact angle control[J]. Complexity20202020: 1-9.
26 SONG Y D, WANG Y J, HOLLOWAY J, et al. Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time[J]. Automatica201783: 243-251.
27 PAL A K, KAMAL S, NAGAR S K, et al. Design of controllers with arbitrary convergence time[J]. Automatica2020112: 108710.
28 BECHLIOULIS C P, ROVITHAKI G A. Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems[J]. Automatica200945(2): 532-538.
29 LI X, YE J K, ZHOU C J, et al. Prescribed performance guidance law with multiple constraints[J]. International Journal of Aerospace Engineering20222022: 1-17.
30 LYU S, YAN X D, TANG S. Prescribed performance interceptor guidance with terminal line of sight angle constraint accounting for missile autopilot lag[J]. Aerospace Science and Technology201769: 171-180.
31 LYU S, ZHU Z H, TANG S, et al. Prescribed performance slide mode guidance law with terminal line-of-sight angle constraint against maneuvering targets[J]. Nonlinear Dynamics201788(3): 2101-2110.
32 BU X W, QI Q, JIANG B X. A Simplified finite-time fuzzy neural controller with prescribed performance applied to waverider aircraft[J]. IEEE Transactions on Fuzzy Systems202230(7): 2529-2537.
33 李旭, 叶继坤, 邵雷, 等. 基于有限时间小超调预设性能控制的三维滑模末制导律设计[J]. 航空兵器2022 (in press).
  LI X, YE J K, SHAO L, et al. Design of three dimensional sliding mode terminal guidance law based on finite-time and small-overshoot prescribed performance control[J]. Aero Weaponry2022 (in press) (in Chinese).
34 HE S M, LEE C H, SHIN H S, et al. Optimal guidance and its applications in missiles and UAVs[M]. Cham: Springer International Publishing, 2020: 54-58.
35 ZHANG W J, FU S N, LI W, et al. An impact angle constraint integral sliding mode guidance law for maneuvering targets interception[J]. Journal of Systems Engineering and Electronics202031(1): 168-184.
文章导航

/