时变通信约束下航天器绕飞的高阶全驱预测控制方法
收稿日期: 2023-02-28
修回日期: 2023-04-11
录用日期: 2023-05-11
网络出版日期: 2023-05-17
基金资助
国家自然科学基金(62173255)
A high⁃order fully actuated predictive control approach of spacecraft flying⁃around under time⁃variant communication constraints
Received date: 2023-02-28
Revised date: 2023-04-11
Accepted date: 2023-05-11
Online published: 2023-05-17
Supported by
National Natural Science Foundation of China(62173255)
针对视线坐标系下具有时变通信约束的航天器绕飞问题,提出了一种高阶全驱(HOFA)预测控制方法以实现绕飞任务并主动补偿服务航天器与跟踪与数据中继卫星系统间的时变通信延迟和数据丢包。首先,在视线坐标系下引入了一个非线性高阶全驱系统模型来描述航天器绕飞的相对动力学模型,并将所提出的绕飞任务转换为非线性高阶全驱系统的跟踪控制问题。其次,利用全驱特性抵消系统中的非线性,从而构建一个线性高阶全驱(LIHOFA)系统。然后,应用丢番图方程建立一个增量线性高阶全驱预测模型以代替传统的降阶预测模型,进而构建多步超前预测以实现跟踪控制性能的优化和时变通信约束的补偿,从而有效地保证了绕飞任务的实现。同时,给出了一个简单的充要条件以分析闭环系统的稳定性和跟踪性能。最后,还提供了航天器在圆轨道和椭圆轨道绕飞的数值仿真以验证高阶全驱预测控制方法的可行性。
张大蔚 , 刘国平 . 时变通信约束下航天器绕飞的高阶全驱预测控制方法[J]. 航空学报, 2024 , 45(1) : 628633 -628633 . DOI: 10.7527/S1000-6893.2023.28633
A High-Order Fully Actuated (HOFA) predictive control approach is proposed for the problem of spacecraft flying-around under time-variant communication constraints in a sight coordinate system, including both time-variant communication delays and time-variant packets dropouts in the communication channels between the servicing spacecraft and the tracking and data relay satellite system. In the sight coordinate system, a nonlinear HOFA system model is introduced to describe the relative dynamics of spacecraft flying-around, such that the proposed flying-around task can be considered as a tracking control problem of nonlinear HOFA system. In this approach, the nonlinearities can be eliminated to construct a linear HOFA system because of full actuation characteristic, and then a Linear Incremental HOFA (LIHOFA) prediction model is constructed by applying a Diophantine Equation to replace a reduced-order prediction model, such that multi-step ahead predictions are developed to achieve the optimization of tracking control performance and the compensation of time-variant communication constraints, which guarantees the realization of this flying-around mission. A necessary and sufficient condition is given to analyze the stability and tracking performance of closed-loop system. Further, two simulated examples of spacecraft flying-around in circular and elliptical orbits are provided to verify the feasibility of HOFA predictive control approach.
1 | 胡庆雷, 邵小东, 杨昊旸, 等. 航天器多约束姿态规划与控制:进展与展望[J]. 航空学报, 2022, 43(10): 527351. |
HU Q L, SHAO X D, YANG H Y, et al. Spacecraft attitude planning and control under multiple constraints: Review and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527351 (in Chinese). | |
2 | 李敏,袁利,魏春岭. 基于混合状态机的航天器自主绕飞多模态控制[J]. 航空学报, 2023, 44(18): 328296. |
LI M, YUAN L, WEI C L. Spacecraft autonomous fly-around multi-mode control based-on hybrid state machine[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 328296. | |
3 | ZHANG D W, LIU G P. Output feedback predictive control for discrete quasilinear systems with application to spacecraft flying-around[J]. Asian Journal of Control, 2022, 24(4): 1846-1861. |
4 | ZHANG D W, LIU G P. Coordinated control of quasilinear multiagent systems via output feedback predictive control[J]. ISA Transactions, 2022, 128: 58-70. |
5 | HUANG Y, JIA Y M. Adaptive finite-time 6-DOF tracking control for spacecraft fly around with input saturation and state constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3259-3272. |
6 | HUANG Y, JIA Y M. Adaptive fixed-time six-DOF tracking control for noncooperative spacecraft fly-around mission[J]. IEEE Transactions on Control Systems Technology, 2019, 27(4): 1796-1804. |
7 | SU Y Z, YANG Y J, YANG X R, et al. Attitude tracking control for observation spacecraft flying around the target spacecraft[J]. IET Control Theory & Applications, 2021, 15(14): 1868-1881. |
8 | WANG Y, JI H B. Input-to-state stability-based adaptive control for spacecraft fly-around with input saturation[J]. IET Control Theory & Applications, 2020, 14(10): 1365-1374. |
9 | ZHANG R, HAN C, RAO Y R, et al. Spacecraft fast fly-around formations design using the bi-teardrop configuration[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1542-1555. |
10 | HUANG Y, JIA Y M. Robust adaptive fixed-time tracking control of 6-DOF spacecraft fly-around mission for noncooperative target[J]. International Journal of Robust and Nonlinear Control, 2018, 28(6): 2598-2618. |
11 | LIU L, LIU J G, WU Y M. Event-triggered coordinated control for multiple solar sail formation flying around planetary displaced orbits[J]. Acta Astronautica, 2021, 184: 286-298. |
12 | WANG W, BAOYIN H X, MENGALI G, et al. Solar sail cooperative formation flying around L2-type artificial equilibrium points[J]. Acta Astronautica, 2020, 169: 224-239. |
13 | 刘国平. 具有时变通信受限非线性信息物理系统的网络化预测控制[J]. 控制理论与应用, 2022, 39(1): 145-153. |
LIU G P. Networked predictive control of nonlinear cyber physical systems with time-varying communication constraints[J]. Control Theory & Applications, 2022, 39(1): 145-153 (in Chinese). | |
14 | GU Z, YAN S, AHN C K, et al. Event-triggered dissipative tracking control of networked control systems with distributed communication delay[J]. IEEE Systems Journal, 2022, 16(2): 3320-3330. |
15 | MASTANI E, RAHMANI M. Dynamic output feedback control for networked systems subject to communication delays, packet dropouts, and quantization[J]. Journal of the Franklin Institute, 2021, 358(8): 4303-4325. |
16 | ZHAO Z Y, YI X J, MA L F, et al. Quantized recursive filtering for networked systems with stochastic transmission delays[J]. ISA Transactions, 2022, 127: 99-107. |
17 | DUAN G R. High-order fully actuated system approaches: Part I. Models and basic procedure[J]. International Journal of Systems Science, 2021, 52(2): 422-435. |
18 | ZHANG D W, LIU G P, CAO L. Coordinated control of high-order fully actuated multiagent systems and its application: A predictive control strategy[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 4362-4372. |
19 | ZHANG D W, LIU G P, CAO L. Constrained cooperative control for high-order fully actuated multiagent systems with application to air-bearing spacecraft simulators[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(3): 1570-1581. |
20 | MENG R, HUA C C, LI K, et al. Adaptive event-triggered control for uncertain high-order fully actuated system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(11): 4438-4442. |
21 | DUAN G Q, LIU G P. Attitude and orbit optimal control of combined spacecraft via a fully-actuated system approach[J]. Journal of Systems Science and Complexity, 2022, 35(2): 623-640. |
22 | 刘暾, 赵钧. 空间飞行器动力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2003: 83-86. |
LIU T, ZHAO J. Dynamics of Spacecraft[M]. Harbin: Harbin Institute of Technology Press, 2003: 83-86 (in Chinese). | |
23 | DUAN G R. High-order fully actuated system approaches: Part X. Basics of discrete-time systems[J]. International Journal of Systems Science, 2022, 53(4): 810-832. |
24 | ZHANG D W, LIU G P. Predictive control for networked high-order fully actuated systems subject to communication delays and external disturbances[J]. ISA Transactions, 2023, 139: 425-435. |
25 | ZHANG D W, LIU G P, CAO L. Predictive control of discrete-time high-order fully actuated systems with application to air-bearing spacecraft simulator[J]. Journal of the Franklin Institute, 2023, 360(8): 5910-5927. |
26 | ZHANG D W, LIU G P, CAO L. Proportional integral predictive control of high-order fully actuated networked multiagent systems with communication delays[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(2): 801-812. |
27 | AMATO F, COSENTINO C, DE TOMMASI G, et al. Input?output finite-time stabilization of linear time-varying discrete-time systems[J]. IEEE Transactions on Automatic Control, 2022, 67(9): 4438-4450. |
28 | BABIARZ A, CZORNIK A, SIEGMUND S. On stabilization of discrete time-varying systems[J]. SIAM Journal on Control and Optimization, 2021, 59(1): 242-266. |
/
〈 |
|
〉 |