微米级铝颗粒在水蒸气和氧气中的点火燃烧特性
收稿日期: 2023-04-13
修回日期: 2023-05-04
录用日期: 2023-05-12
网络出版日期: 2023-05-15
基金资助
国家自然科学基金(52006240);湖南省自然科学基金(2021JJ30775)
Ignition and combustion characteristics of micro-sized aluminum particles in H2O and O2
Received date: 2023-04-13
Revised date: 2023-05-04
Accepted date: 2023-05-12
Online published: 2023-05-15
Supported by
National Natural Science Foundation of China(52006240);Hunan Provincial Natural Science Foundation(2021JJ30775)
通过实验研究了单个微米级铝颗粒(50~160 μm)在水蒸气和不同氧含量环境中的点火燃烧特性,通过铝颗粒的光学信息确定了其初始直径和火焰平均直径,划分了点火延迟时间和燃烧时间。铝颗粒的燃烧过程会发生多种不同的燃烧行为,颗粒破碎、喷射更易发生在温度更高的环境中,微爆更易发生在氧含量更高的环境中。提高环境温度和含氧量均可以减少颗粒的点火延迟时间,但是温度更高反而使颗粒的燃烧时间更长,这可能是高温氧化铝带走了颗粒大量的热量造成的。提高氧含量可以有效减少颗粒的燃烧时间,在弱氧化性环境中铝颗粒的燃烧集中在表面,并且难以完全燃烧,表面反应在燃烧过程中发挥了重要的作用。
胡泽君 , 冯运超 , 何志成 , 夏智勋 , 李明泰 . 微米级铝颗粒在水蒸气和氧气中的点火燃烧特性[J]. 航空学报, 2023 , 44(15) : 528866 -528866 . DOI: 10.7527/S1000-6893.2023.28866
The ignition and combustion characteristics of single micro-sized aluminum particles (50-160 μm) in water vapor and different oxygen contents are studied experimentally. The initial diameters and flame average diameters of the aluminum particles are determined by their optical information, and the ignition delay time and combustion time are divided. Different combustion behaviors will occur in the combustion process of aluminum particles. Particle fragmentation and injection are more likely to occur in the environment with higher temperature, and micro-explosion is more prevalent in the environment with higher oxygen content. Increasing the ambient temperature or oxygen content can reduce the ignition delay time of the particles, but the higher temperature makes the combustion time of the particles longer, which may be caused by the high temperature alumina taking away a lot of heat. Increasing the oxygen content can effectively reduce the combustion time of the particles. In weak oxidation environment, the combustion of aluminum particles is concentrated on the surface, and is difficult to burn completely. The surface reaction plays an important role in the combustion process.
1 | MARSH A W, WANG G T, HEYBORNE J D, et al. Time-resolved size, velocity, and temperature statistics of aluminum combustion in solid rocket propellants[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4417-4424. |
2 | CHEN Y, GUILDENBECHER D R, HOFFMEISTER K N G, et al. Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry[J]. Combustion and Flame, 2017, 182: 225-237. |
3 | GOROSHIN S, HIGGINS A, KAMEL M. Powdered metals as fuel for hypersonic ramjets:AIAA-2001-3919[R]. Reston: AIAA, 2001. |
4 | BERGTHORSON J M. Recyclable metal fuels for clean and compact zero-carbon power[J]. Progress in Energy and Combustion Science, 2018, 68: 169-196. |
5 | BERGTHORSON J M, YAVOR Y, PALECKA J, et al. Metal-water combustion for clean propulsion and power generation[J]. Applied Energy, 2017, 186: 13-27. |
6 | MILLER T F, HERR J D. Green rocket propulsion by reaction of Al and Mg powders and water:AIAA-2004-4037[R]. Reston: AIAA, 2004. |
7 | WATERS D F, CADOU C P. Modeling a hybrid Rankine-cycle/fuel-cell underwater propulsion system based on aluminum-water combustion[J]. Journal of Power Sources, 2013, 221: 272-283. |
8 | HUANG H T, ZOU M S, GUO X Y, et al. Analysis of the aluminum reaction efficiency in a hydro-reactive fuel propellant used for a water ramjet[J]. Combustion, Explosion, and Shock Waves, 2013, 49(5): 541-547. |
9 | BARONE D, LOTH E, WEISS P, et al. Feasibility of water-aluminum reactor power (WARP) for long endurance UUVs: AIAA-2011-5904[R]. Reston: AIAA, 2011. |
10 | INGENITO A, BRUNO C. Using aluminum for space propulsion[J]. Journal of Propulsion and Power, 2004, 20(6): 1056-1063. |
11 | CONNELL T L, RISHA G A, YETTER R A, et al. Combustion of alane and aluminum with water for hydrogen and thermal energy generation[J]. Proceedings of the Combustion Institute, 2011, 33(2): 1957-1965. |
12 | TAPPAN B C, DIRMYER M R, RISHA G A. Evidence of a kinetic isotope effect in nanoaluminum and water combustion[J]. Angewandte Chemie, 2014, 126(35): 9372-9375. |
13 | RISHA G A, CONNELL T L, YETTER R A, et al. Combustion of frozen nanoaluminum and water mixtures[J]. Journal of Propulsion and Power, 2014, 30(1): 133-142. |
14 | GEORGES W, YAVOR Y, HIGGINS A J, et al. Burning rate of nano-aluminum-water propellant at high pressures: AIAA-2014-0648[R]. Reston: AIAA, 2014. |
15 | ERMOLAEV B S, KHRAPOVSKII V E, SHMELEV V M. Convective burning of an aluminum-water mixture[J]. Russian Journal of Physical Chemistry B, 2014, 8(5): 680-686. |
16 | SUNDARAM D S, YANG V, CONNELL T L, et al. Flame propagation of nano/micron-sized aluminum particles and ice (ALICE) mixtures[J]. Proceedings of the Combustion Institute, 2013, 34(2): 2221-2228. |
17 | SIPPEL T R, POURPOINT T L, SON S F. Combustion of nanoaluminum and water propellants: Effect of equivalence ratio and safety/aging characterization[J]. Propellants, Explosives, Pyrotechnics, 2013, 38(1): 56-66. |
18 | KITTELL D E, GROVEN L J, SIPPEL T R, et al. Dependence of nano-aluminum and water propellant combustion on pH and rheology[J]. Combustion Science and Technology, 2013, 185(5): 817-834. |
19 | WOOD T D, PFEIL M A, POURPOINT T L, et al. Feasibility study and demonstration of an aluminum and ice solid propellant: AIAA-2009-4890[R]. Reston: AIAA, 2009. |
20 | SABOURIN J L, RISHA G A, YETTER R A, et al. Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures[J]. Combustion and Flame, 2008, 154(3): 587-600. |
21 | RISHA G A, SON S F, YETTER R A, et al. Combustion of nano-aluminum and liquid water[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2029-2036. |
22 | YETTER R A, RISHA G A, SON S F. Metal particle combustion and nanotechnology[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1819-1838. |
23 | SUNDARAM D S, YANG V. Combustion of micron-sized aluminum particle, liquid water, and hydrogen peroxide mixtures[J]. Combustion and Flame, 2014, 161(9): 2469-2478. |
24 | ZASECK C R, SON S F, POURPOINT T L. Combustion of micron-aluminum and hydrogen peroxide propellants[J]. Combustion and Flame, 2013, 160(1): 184-190. |
25 | KI W, SHMELEV V, FINIAKOV S, et al. Combustion of micro aluminum-water mixtures[J]. Combustion and Flame, 2013, 160(12): 2990-2995. |
26 | SIPPEL T R, SON S F, GROVEN L J, et al. Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum[J]. Combustion and Flame, 2015, 162(3): 846-854. |
27 | MARION M, CHAUVEAU C, G?KALP I. Studies on the ignition and burning of levitated aluminum particles[J]. Combustion Science and Technology, 1996, 115(4/5/6): 369-390. |
28 | DREIZIN E L. Experimental study of stages in aluminium particle combustion in air[J]. Combustion and Flame, 1996, 105(4): 541-556. |
29 | BUCHER P, YETTER R A, DRYER F L, et al. Flames structure measurement of single, isolated aluminum particles burning in air[J]. Symposium (International) on Combustion, 1996, 26(2): 1899-1908. |
30 | GILL R J, BADIOLA C, DREIZIN E L. Combustion times and emission profiles of micron-sized aluminum particles burning in different environments[J]. Combustion and Flame, 2010, 157(11): 2015-2023. |
31 | MOHAN S, FURET L, DREIZIN E L. Aluminum particle ignition in different oxidizing environments[J]. Combustion and Flame, 2010, 157(7): 1356-1363. |
32 | LYNCH P, KRIER H, GLUMAC N. A correlation for burn time of aluminum particles in the transition regime[J]. Proceedings of the Combustion Institute, 2009, 32(2): 1887-1893. |
33 | BECKSTEAD M W. Correlating aluminum burning times[J]. Combustion, Explosion and Shock Waves, 2005, 41(5): 533-546. |
34 | GLORIAN J, GALLIER S, CATOIRE L. On the role of heterogeneous reactions in aluminum combustion[J]. Combustion and Flame, 2016, 168: 378-392. |
35 | BOJKO B T, DESJARDIN P. Modeling the diffusion to kinetically controlled burning transition of micron-sized aluminum particles: AIAA-2015-0166[R]. Reston: AIAA, 2015. |
36 | STARIK A M, KULESHOV P S, SHARIPOV A S, et al. Numerical analysis of nanoaluminum combustion in steam[J]. Combustion and Flame, 2014, 161(6): 1659-1667. |
37 | SCHOENITZ M, CHEN C M, DREIZIN E L. Oxidation of aluminum particles in the presence of water[J]. The Journal of Physical Chemistry B, 2009, 113(15): 5136-5140. |
38 | WASHBURN E B, TRIVEDI J N, CATOIRE L, et al. The simulation of the combustion of micrometer-sized aluminum particles with steam[J]. Combustion Science and Technology, 2008, 180(8): 1502-1517. |
39 | ZHANG J R, XIA Z X, MA L K, et al. Experimental study on aluminum particles combustion in a turbulent jet[J]. Energy, 2021, 214: 118889. |
40 | FENG Y C, XIA Z X, HUANG L Y, et al. Ignition and combustion of a single aluminum particle in hot gas flow[J]. Combustion and Flame, 2018, 196: 35-44. |
41 | FENG Y C, XIA Z X, HUANG L Y, et al. Effect of ambient temperature on the ignition and combustion process of single aluminium particles[J]. Energy, 2018, 162: 618-629. |
/
〈 |
|
〉 |