综述

超声速燃烧中的概率密度函数方法研究进展

  • 乔竑玮 ,
  • 梁剑寒 ,
  • 张林 ,
  • 孙明波 ,
  • 陈玉俏
展开
  • 国防科技大学 高超声速技术实验室,长沙 410073
.E-mail: jhleon@vip.sina.com

收稿日期: 2023-04-03

  修回日期: 2023-05-04

  录用日期: 2023-05-12

  网络出版日期: 2023-05-15

基金资助

国家自然科学基金(12202487)

Research progress of probability density function approach in supersonic combustion

  • Hongwei QIAO ,
  • Jianhan LIANG ,
  • Lin ZHANG ,
  • Mingbo SUN ,
  • Yuqiao CHEN
Expand
  • Hypersonic Technology Laboratory,National University of Defense Technology,Changsha 410073,China

Received date: 2023-04-03

  Revised date: 2023-05-04

  Accepted date: 2023-05-12

  Online published: 2023-05-15

Supported by

National Natural Science Foundation of China(12202487)

摘要

概率密度函数方法能够精确封闭湍流/化学反应相互作用,在湍流燃烧数值模拟中得到了广泛应用。随着高超声速推进技术的不断发展,超燃冲压发动机内的超声速湍流燃烧为概率密度函数方法的应用带来了新的挑战。首先,综述了概率密度函数方法应用于超声速湍流燃烧的最新进展,概述了概率密度函数方法的基本理论、关键模型和求解框架;其次,介绍了超声速湍流燃烧对概率密度函数方法的理论、模型和数值求解方面的具体挑战和相关研究工作,包括考虑可压缩效应、高速源项模型修正、小尺度混合模型改进等;然后,综述了概率密度函数方法在超声速湍流燃烧中的应用情况;最后,对超声速燃烧中概率密度函数方法的应用前景和发展方向做出了展望。

本文引用格式

乔竑玮 , 梁剑寒 , 张林 , 孙明波 , 陈玉俏 . 超声速燃烧中的概率密度函数方法研究进展[J]. 航空学报, 2024 , 45(8) : 28802 -028802 . DOI: 10.7527/S1000-6893.2023.28802

Abstract

The probability density function approach can accurately close the turbulent/chemical reaction interaction, and has been widely used in the numerical simulation of turbulent combustion. With the continuous development of the hypersonic propulsion technology, supersonic turbulent combustion in scramjet has brought new challenges to the application of probability density function approach. At first, this paper reviews the latest progress of the application of probability density function approach to supersonic turbulent combustion. The basic theory, key models and solution framework of probability density function approach are summarized. The specific challenges and related research work of the theory, model and numerical solution of the probability density function approach for supersonic turbulent combustion are introduced, including the compressibility effect, high-speed source term model correction, and small-scale hybrid model improvement. Then, the application of probability density function approach in supersonic turbulent combustion is reviewed. Finally, the application prospects and development direction of the probability density function approach in supersonic combustion are discussed.

参考文献

1 SELEZNEV R K, SURZHIKOV S T, SHANG J S. A review of the scramjet experimental data base[J]. Progress in Aerospace Sciences2019106: 43-70.
2 崔兴达. 超声速气流中低频燃烧振荡问题研究[D]. 长沙: 国防科学技术大学, 2014.
  CUI X D. Investigations on low frequency combustion oscillations in supersonic flow[D].Changsha: National University of Defense Technology, 2014 (in Chinese).
3 CHEN C P, GAO T Y, LIANG J H. Separation induced low-frequency unsteadiness in a supersonic combustor with single-side expansion[J]. Physics of Fluids201931(5): 056103.
4 赵国焱. 超声速气流中火焰闪回诱发与火焰传播机制研究[D]. 长沙: 国防科技大学, 2019.
  ZHAO G Y. On the excitation of flame flashback and flame propagation mechanism in supersonic flow [D]. Changsha: National University of Defense Technology, 2019 (in Chinese).
5 FRY R S. A century of ramjet propulsion technology evolution[J]. Journal of Propulsion and Power200420(1): 27-58.
6 BARNES F W, SEGAL C. Cavity-based flameholding for chemically-reacting supersonic flows[J]. Progress in Aerospace Sciences201576: 24-41.
7 SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD Vision 2030 Study: A path to revolutionary computational aerosciences: NASA/CR-2014-218178[R]. Washington, D.C.: NASA, 2014.
8 POTTURI A S, EDWARDS J R. Hybrid large-eddy/Reynolds-averaged Navier-Stokes simulations of flow through a model scramjet[J]. AIAA Journal201452(7): 1417-1429.
9 MOULE Y, SABELNIKOV V, MURA A. Highly resolved numerical simulation of combustion in supersonic hydrogen-air coflowing jets[J]. Combustion and Flame2014161(10): 2647-2668.
10 PIERCE C D, MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics2004504: 73-97.
11 FOX R O. Computational models for turbulent reacting flows[M]. Cambridge: Cambridge University Press, 2003.
12 POPE S B. Small scales, many species and the manifold challenges of turbulent combustion[J]. Proceedings of the Combustion Institute201334(1): 1-31.
13 MENTER F R. Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International Journal of Computational Fluid Dynamics200923(4): 305-316.
14 NONOMURA T, FUJII K. Characteristic finite-difference WENO scheme for multicomponent compressible fluid analysis: Overestimated quasi-conservative formulation maintaining equilibriums of velocity, pressure, and temperature[J]. Journal of Computational Physics2017340: 358-388.
15 HICKEL S, EGERER C P, LARSSON J. Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction[J]. Physics of Fluids201426(10): 106101.
16 HAWORTH D C. Progress in probability density function methods for turbulent reacting flows[J]. Progress in Energy and Combustion Science201036(2): 168-259.
17 杨越, 游加平, 孙明波. 超声速燃烧数值模拟中的湍流与化学反应相互作用模型[J]. 航空学报201536(1): 261-273.
  YANG Y, YOU J P, SUN M B. Modeling of turbulence-chemistry interactions in numerical simulations of supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica201536(1): 261-273 (in Chinese).
18 POPE S B. PDF methods for turbulent reactive flows[J]. Progress in Energy and Combustion Science198511(2): 119-192.
19 HAWORTH D C, TAHRY S H EL. Probability density function approach for multidimensional turbulent flow calculations with application to in-cylinder flows in reciprocating engines[J]. AIAA Journal199129: 208-218.
20 ZHANG L, LIANG J H, SUN M B, et al. An energy-consistency-preserving large eddy simulation-scalar filtered mass density function (LES-SFMDF) method for high-speed flows[J]. Combustion Theory and Modelling201822(1): 1-37.
21 YALDIZLI M, MEHRAVARAN K, JABERI F A. Large-eddy simulations of turbulent methane jet flames with filtered mass density function[J]. International Journal of Heat and Mass Transfer201053(11-12): 2551-2562.
22 GUAN Q D, LIANG J H, SUN M B, et al. Large eddy simulation of supersonic mixing layers using a compressible filtered mass density function method[J]. Aerospace Science and Technology2022124: 107425.
23 黄立航, 朱旻明, 叶桃红. 改进密度耦合的稀疏拉格朗日FDF方法模拟Sandia火焰E[J]. 中国科学技术大学学报202050(5): 589-595, 604.
  HUANG L H, ZHU M M, YE T H. Sparse-Lagrangian FDF simulation of Sandia flame E with modified density coupling[J]. Journal of University of Science and Technology of China202050(5): 589-595, 604 (in Chinese).
24 TANG Q, ZHAO W, BOCKELIE M, et al. Multi-environment probability density function method for modelling turbulent combustion using realistic chemical kinetics[J]. Combustion Theory and Modelling200711(6): 889-907.
25 SCHWARTZENTRUBER T E, BOYD I D. Progress and future prospects for particle-based simulation of hypersonic flow[J]. Progress in Aerospace Sciences201572: 66-79.
26 ROWINSKI D H, POPE S B. Computational study of lean premixed turbulent flames using RANSPDF and LESPDF methods[J]. Combustion Theory and Modelling201317(4): 610-656.
27 YANG Y, WANG H F, POPE S B, et al. Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame[J]. Proceedings of the Combustion Institute201334(1): 1241-1249.
28 POPE S B. Mapping closures for turbulent mixing and reaction[J]. Theoretical and Computational Fluid Dynamics19912(5): 255-270.
29 关清帝. 一般曲线坐标系下拉格朗日PDF方法及其在超声速燃烧中的应用研究[D]. 长沙: 国防科技大学, 2022.
  GUAN Q D. A study of the Lagrangian PDF method in a general curvilinear coordinate system and its application to supersonic combustion[D]. Changsha: National University of Defense Technology, 2022 (in Chinese).
30 范周琴, 孙明波, 刘卫东. 湍流燃烧的概率密度函数输运方程模型研究[J]. 飞航导弹2010(5): 90-95.
  FAN Z Q, SUN M B, LIU W D. Study on transport equation model of probability density function for turbulent combustion[J]. Aerodynamic Missile Journal2010(5): 90-95 (in Chinese).
31 刘亚明, 柳朝晖, 贺铸, 等. 湍流被动标量研究的最新进展[J]. 力学进展200535(4): 549-558.
  LIU Y M, LIU Z H, HE Z, et al. Recent progress in statistics of turbulent passive scalar[J]. Advances in Mechanics200535(4): 549-558 (in Chinese).
32 CELIS C, FIGUEIRA DA SILVA L F. Lagrangian mixing models for turbulent combustion: Review and prospects[J]. Flow, Turbulence and Combustion201594(3): 643-689.
33 任祝寅, 解青, 杨天威, 等. 输运概率密度函数中的小尺度标量混合建模[J]. 空气动力学学报202038(3): 501-514.
  REN Z Y, XIE Q, YANG T W, et al. Micromixing models for transported PDF simulation of turbulent combustion[J]. Acta Aerodynamica Sinica202038(3): 501-514 (in Chinese).
34 GONZALEZ-JUEZ E D, KERSTEIN A R, RANJAN R, et al. Advances and challenges in modeling high-speed turbulent combustion in propulsion systems[J]. Progress in Energy and Combustion Science201760: 26-67.
35 PANT T, JAIN U, WANG H F. Transported PDF modeling of compressible turbulent reactive flows by using the Eulerian Monte Carlo fields method[J]. Journal of Computational Physics2021425: 109899.
36 GIVI P. Model-free simulations of turbulent reactive flows[J]. Progress in Energy and Combustion Science198915(1): 1-107.
37 BOGER M, VEYNANTE D, BOUGHANEM H, et al. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion[J]. Symposium (International) on Combustion199827(1): 917-925.
38 COLUCCI P J, JABERI F A, GIVI P, et al. Filtered density function for large eddy simulation of turbulent reacting flows[J]. Physics of Fluids199810(2): 499-515.
39 JABERI F A, COLUCCI P J, JAMES S, et al. Filtered mass density function for large-eddy simulation of turbulent reacting flows[J]. Journal of Fluid Mechanics1999401: 85-121.
40 BORGHI R. Turbulent combustion modelling[J]. Progress in Energy and Combustion Science198814(4): 245-292.
41 SUBRAMANIAM S, POPE S B. A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees[J]. Combustion and Flame1998115(4): 487-514.
42 DOPAZO C. Relaxation of initial probability density functions in the turbulent convection of scalar fields[J]. Physics of Fluids197922(1): 20-30.
43 DEVAUD C B, STANKOVI? I, MERCI B. Deterministic Multiple Mapping Conditioning (MMC) applied to a turbulent flame in Large Eddy Simulation (LES)[J]. Proceedings of the Combustion Institute201334(1): 1213-1221.
44 WANDEL A P, LINDSTEDT R P. Hybrid multiple mapping conditioning modeling of local extinction[J]. Proceedings of the Combustion Institute201334(1): 1365-1372.
45 MEYER D W, JENNY P. A mixing model for turbulent flows based on parameterized scalar profiles[J]. Physics of Fluids200618(3): 35105.
46 MEYER D W. A new particle interaction mixing model for turbulent dispersion and turbulent reactive flows[J]. Physics of Fluids201022(3): 35103.
47 CAI J, WANG D H, TONG C N, et al. Investigation of subgrid-scale mixing of mixture fraction and temperature in turbulent partially premixed flames[J]. Proceedings of the Combustion Institute200932(1): 1517-1525.
48 WANG D H, TONG C N, BARLOW R S, et al. Experimental study of scalar filtered mass density function in turbulent partially premixed flames[J]. Proceedings of the Combustion Institute200731(1): 1533-1541.
49 YU C K, BYKOV V, MAAS U. Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames[J]. Proceedings of the Combustion Institute201937(2): 2183-2190.
50 BYKOV V, GOL’DSHTEIN V, MAAS U. Simple global reduction technique based on decomposition approach[J]. Combustion Theory and Modelling200812(2): 389-405.
51 周华. 湍流预混燃烧的输运概率密度函数模拟研究[D]. 北京: 清华大学, 2017.
  ZHOU H. Transported probability density function simulations of turbulent premixed flames[D].Beijing: Tsinghua University, 2017 (in Chinese).
52 BANAEIZADEH A, AFSHARI A, SCHOCK H, et al. Large-eddy simulations of turbulent flows in internal combustion engines[J]. International Journal of Heat and Mass Transfer201360: 781-796.
53 ESMAEILI M, AFSHARI A, JABERI F A. Turbulent mixing in non-isothermal jet in crossflow[J]. International Journal of Heat and Mass Transfer201589: 1239-1257.
54 WANG H F, POPE S B. Large eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame[J]. Proceedings of the Combustion Institute201133(1): 1319-1330.
55 KOMPERDA J, GHIASI Z, LI D R, et al. A hybrid discontinuous spectral element method and filtered mass density function solver for turbulent reacting flows[J]. Numerical Heat Transfer, Part B: Fundamentals202078(1): 1-29.
56 TANG Q, XU J, POPE S B. Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames[J]. Proceedings of the Combustion Institute200028(1): 133-139.
57 SHEIKHI M R H, GIVI P, POPE S B. Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows[J]. Physics of Fluids200719(9): 95106.
58 LINDSTEDT R P, LOULOUDI S A, VáOS E M. Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry[J]. Proceedings of the Combustion Institute200028(1): 149-156.
59 王海峰, 陈义良, 刘明侯. 湍流扩散燃烧的数值研究—PDF方法和火焰面模型的性能比较[J]. 工程热物理学报200526(S1): 241-244.
  WANG H F, CHEN Y L, LIU M H. Numerical investigation of turbulent nonpremixed combustion: Performance of PDF method and flamelet models [J]. Journal of Engineering Thermophysics200526(S1): 241-244 (in Chinese).
60 黄庆, 朱旻明, 叶桃红, 等. PDF方法模拟钝体驻定的湍流扩散火焰[J]. 计算物理200825(6): 733-743.
  HUANG Q, ZHU M M, YE T H, et al. PDF simulation of bluff-body stabilized turbulent non-premixed flame[J]. Chinese Journal of Computational Physics200825(6): 733-743 (in Chinese).
61 SHARMA E, DE S, CLEARY M J. LES of a lifted methanol spray flame series using the sparse Lagrangian MMC approach[J]. Proceedings of the Combustion Institute202138(2): 3399-3407.
62 CARRARA M D, DESJARDIN P E. A filtered mass density function approach for modeling separated two-phase flows for LES I: Mathematical formulation[J]. International Journal of Multiphase Flow200632(3): 365-384.
63 LI Z, BANAEIZADEH A, JABERI F A. Two-phase filtered mass density function for LES of turbulent reacting flows[J]. Journal of Fluid Mechanics2014760: 243-277.
64 GERLINGER P. Lagrangian transported MDF methods for compressible high speed flows[J]. Journal of Computational Physics2017339: 68-95.
65 TURKERI H, ZHAO X Y, MURADOGLU M. Large eddy simulation/probability density function modeling of turbulent swirling stratified flame series[J]. Physics of Fluids202133(2): 025117.
66 VALIDI A, SCHOCK H, JABERI F. Turbulent jet ignition assisted combustion in a rapid compression machine[J]. Combustion and Flame2017186: 65-82.
67 MURADOGLU M, LIU K, POPE S B. PDF modeling of a bluff-body stabilized turbulent flame[J]. Combustion and Flame2003132(1-2): 115-137.
68 WANG L P, HAWKES E R, CHEN J H. Flame edge statistics in turbulent combustion[J]. Proceedings of the Combustion Institute201133(1): 1439-1446.
69 TIRUNAGARI R R, POPE S B. LES/PDF for premixed combustion in the DNS limit[J]. Combustion Theory and Modelling201620(5): 834-865.
70 TIRUNAGARI R R, POPE S B. Characterization of extinction/reignition events in turbulent premixed counterflow flames using strain-rate analysis[J]. Proceedings of the Combustion Institute201736(2): 1919-1927.
71 STEINBERG A M, HAMLINGTON P E, ZHAO X Y. Structure and dynamics of highly turbulent premixed combustion[J]. Progress in Energy and Combustion Science202185: 100900.
72 DRISCOLL J F, CHEN J H, SKIBA A W, et al. Premixed flames subjected to extreme turbulence: Some questions and recent answers[J]. Progress in Energy and Combustion Science202076: 100802.
73 LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences2020119: 100636.
74 ZEMAN O. On the decay of compressible isotropic turbulence[J]. Physics of Fluids A: Fluid Dynamics19913(5): 951-955.
75 DELARUE B J, POPE S B. Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods[J]. Physics of Fluids199810(2): 487-498.
76 M?BUS H, GERLINGER P, BRüGGEMANN D. Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion[J]. Combustion and Flame2003132(1-2): 3-24.
77 HSU A T, TSAI Y L P, RAJU M S. Probability density function approach for compressible turbulent reacting flows[J]. AIAA Journal199432(7): 1407-1415.
78 BANAEIZADEH A, LI Z R, JABERI F A. Compressible scalar filtered mass density function model for high-speed turbulent flows[J]. AIAA Journal201149(10): 2130-2143.
79 NIK M, GIVI P, MADNIA C, et al. EPVS-FMDF for LES of high-speed turbulent flows[C]∥ Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
80 陈志辉, 徐旭. 用简化PDF方法分析温度脉动在超声速湍流燃烧中的作用[J]. 燃烧科学与技术200814(5): 468-473.
  CHEN Z H, XU X. Examine the effect of temperature fluctuation on supersonic combustion by assumed PDF approach[J]. Journal of Combustion Science and Technology200814(5): 468-473 (in Chinese).
81 KOO H, DONDE P, RAMAN V. LES-based Eulerian PDF approach for the simulation of scramjet combustors[J]. Proceedings of the Combustion Institute201334(2): 2093-2100.
82 DONDE P, KOO H, RAMAN V. A multivariate quadrature based moment method for LES based modeling of supersonic combustion[J]. Journal of Computational Physics2012231(17): 5805-5821.
83 IRANNEJAD A, BANAEIZADEH A, JABERI F. Large eddy simulation of turbulent spray combustion[J]. Combustion and Flame2015162(2): 431-450.
84 ANSARI N, STRAKEY P A, GOLDIN G M, et al. Filtered density function simulation of a realistic swirled combustor[J]. Proceedings of the Combustion Institute201535(2): 1433-1442.
85 DE ALMEIDA Y P, NAVARRO-MARTINEZ S. Large Eddy Simulation of a supersonic lifted flame using the Eulerian stochastic fields method[J]. Proceedings of the Combustion Institute201937(3): 3693-3701.
86 DE ALMEIDA Y P, NAVARRO-MARTINEZ S. Large eddy simulation of supersonic combustion using the Eulerian stochastic fields method[J]. Flow, Turbulence and Combustion2019103(4): 943-962.
87 张林. 高速湍流燃烧LES-TPDF方法及其应用研究[D]. 长沙: 国防科技大学, 2018.
  ZHANG L. LES-TPDF methods and their applications for high-speed turbulent combustion[D].Changsha: National University of Defense Technology, 2018 (in Chinese).
88 BELJADID A, LEFLOCH P G, MISHRA S, et al. Schemes with well-controlled dissipation. Hyperbolic systems in nonconservative form[J]. Communications in Computational Physics201721(4): 913-946.
89 ZHANG L, LIANG J H, SUN M B, et al. A conservative and consistent scalar filtered mass density function method for supersonic flows[J]. Physics of Fluids202133(2): 26101.
90 DE ALMEIDA Y P, NAVARRO-MARTINEZ S. Joint-velocity scalar energy probability density function method for large eddy simulations of compressible flow[J]. Physics of Fluids202133(3): 35155.
91 CAO R R, WANG H F, POPE S B. The effect of mixing models in PDF calculations of piloted jet flames[J]. Proceedings of the Combustion Institute200731(1): 1543-1550.
92 CHEN W W, LIANG J H, ZHANG L, et al. A numerical investigation of mixing models in LES-FMDF for compressible reactive flows[J]. Energies202114(16): 5180.
93 WANG H F, PANT T, ZHANG P. LES/PDF modeling of turbulent premixed flames with locally enhanced mixing by reaction[J]. Flow, Turbulence and Combustion2018100(1): 147-175.
94 关清帝, 梁剑寒, 张林, 等. 一般曲线坐标系下概率密度函数方法及其在超声速燃烧中的应用[J]. 航空学报202344(4): 126677.
  GUAN Q D, LIANG J H, ZHANG L, et al. Probability density function method in general curvilinear coordinate system and its application in supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica202344(4): 126677 (in Chinese).
95 INKARBEKOV M, AITZHAN A, KALTAYEV A, et al. A GPU-accelerated filtered density function simulator of turbulent reacting flows[J]. International Journal of Computational Fluid Dynamics202034(6): 381-396.
96 HUANG W, DU Z B, YAN L, et al. Flame propagation and stabilization in dual-mode scramjet combustors: A survey[J]. Progress in Aerospace Sciences2018101: 13-30.
97 赵国焱, 孙明波, 吴锦水. 基于不同PDF的超声速扩散燃烧火焰面模型对比[J]. 推进技术201536(2): 232-237.
  ZHAO G Y, SUN M B, WU J S. Comparison of supersonic diffusion combustion flamelet model based on different PDF[J]. Journal of Propulsion Technology201536(2): 232-237 (in Chinese).
98 丁海昕, 钟诚文. 不同PDF模型在超燃冲压发动机数值模拟中的应用[J]. 航空工程进展201910(5): 698-706.
  DING H X, ZHONG C W. Application of different PDF models for numerical simulation of scramjet[J]. Advances in Aeronautical Science and Engineering201910(5): 698-706 (in Chinese).
99 IRANNEJAD A, JABERI F A, KOMPERDA J, et al. Large eddy simulation of supersonic turbulent combustion with FMDF[C]∥ Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014.
100 KOMPERDA J, GHIASI Z, LI D R, et al. Simulation of the cold flow in a ramp-cavity combustor using a DSEM-LES/FMDF hybrid scheme[C]∥ Proceedings of the 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
101 王方, 王煜栋, 姜胜利, 等. AECSC-JASMIN湍流燃烧仿真软件研发和检验[J]. 航空学报202142(12): 625003.
  WANG F, WANG Y D, JIANG S L, et al. Development and testing of AECSC-JASMIN turbulent combustion simulation software[J]. Acta Aeronautica et Astronautica Sinica202142(12): 625003 (in Chinese).
102 王方, 窦力, 魏观溢, 等. 基于PDF-LES模型的凹腔支板火焰稳定器模拟[J]. 工程热物理学报202142(3): 758-767.
  WANG F, DOU L, WEI G Y, et al. The simulation of cavity flameholder by PDF-LES method[J]. Journal of Engineering Thermophysics202142(3): 758-767 (in Chinese).
103 GIVI P. Filtered density function for subgrid scale modeling of turbulent combustion[J]. AIAA Journal200644(1): 16-23.
文章导航

/