综述

非稳态超声速燃烧电激励调控技术研究进展

  • 孙明波 ,
  • 朱家健 ,
  • 罗天罡 ,
  • 李沁远 ,
  • 田轶夫 ,
  • 万明罡 ,
  • 孙永超
展开
  • 国防科技大学 高超声速技术重点实验室,长沙 410073
.E-mail: sunmingbo@nudt.edu.cn

收稿日期: 2023-04-03

  修回日期: 2023-04-21

  录用日期: 2023-05-11

  网络出版日期: 2023-05-15

基金资助

国家自然科学基金(11925207)

Research progress of unsteady supersonic combustion controlled by electric excitation technology

  • Mingbo SUN ,
  • Jiajian ZHU ,
  • Tiangang LUO ,
  • Qinyuan LI ,
  • Yifu TIAN ,
  • Minggang WAN ,
  • Yongchao SUN
Expand
  • Hypersonic Technology Laboratory,National University of Defense Technology,Changsha 410073,China

Received date: 2023-04-03

  Revised date: 2023-04-21

  Accepted date: 2023-05-11

  Online published: 2023-05-15

Supported by

National Natural Science Foundation of China(11925207)

摘要

点火、燃烧振荡、火焰闪回和火焰吹熄等非稳态超声速燃烧现象是影响超燃冲压发动机高效燃烧组织的关键因素。实现非稳态超声速燃烧的主动实时调控对发动机的可靠鲁棒工作至关重要,是使超燃冲压发动机进一步走向实用化所必须解决的问题。综述了非稳态超声速燃烧电激励调控技术的研究进展,分析和探讨了电激励强化点火、电激励调控燃烧模态、电激励抑制燃烧振荡和火焰闪回、电激励拓宽火焰稳定极限与助燃等作用机制和应用效果,并对非稳态超声速燃烧电激励调控技术的未来发展趋势进行了展望,为后续开展电激励调控非稳态超声速燃烧研究工作提供了参考和借鉴。

本文引用格式

孙明波 , 朱家健 , 罗天罡 , 李沁远 , 田轶夫 , 万明罡 , 孙永超 . 非稳态超声速燃烧电激励调控技术研究进展[J]. 航空学报, 2023 , 44(15) : 528787 -528787 . DOI: 10.7527/S1000-6893.2023.28787

Abstract

Unsteady supersonic combustion phenomena such as ignition, combustion oscillation, flame flashback and flame blowout are the key factors affecting the efficient combustion structure of scramjet engine. To realize the active real-time control of unsteady supersonic combustion, a problem that must be solved to make the scramjet engine further practical, is very important for the reliable and robust operation of the engine. After reviewing the research progress of electric excitation control technology for unsteady supersonic combustion, this paper analyzes the mechanism and application effects of electric excitation to strengthen ignition, control combustion mode, suppress combustion oscillation and flame flashback, widen flame stability limit and aid combustion. Moreover, this paper prospects the future development trend of electric excitation control technology for unsteady supersonic combustion and may provide a reference for subsequent research on unsteady supersonic combustion controlled by electric excitation.

参考文献

1 曾慧, 白菡尘, 朱涛. X-51A超燃冲压发动机及飞行验证计划[J]. 导弹与航天运载技术2010(1): 57-61.
  ZENG H, BAI H C, ZHU T. X-51A scramjet engine flight and demonstration program[J]. Missiles and Space Vehicles2010(1): 57-61 (in Chinese).
2 NAKAYA S, HIKICHI Y, NAKAZAWA Y, et al. Ignition and supersonic combustion behavior of liquid ethanol in a scramjet model combustor with cavity flame holder[J]. Proceedings of the Combustion Institute201535(2): 2091-2099.
3 LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences2020119: 100636.
4 赵永胜, 林宇震, 王建臣, 等. 支板/凹腔超声速燃烧室总压损失特性研究[J]. 推进技术201637(2): 339-345.
  ZHAO Y S, LIN Y Z, WANG J C, et al. Total pressure loss characteristics in a strut-cavity based scramjet combustor[J]. Journal of Propulsion Technology201637(2): 339-345 (in Chinese).
5 ROSATO D A, OMBRELLO T M, CUPPOLETTI D, et al. Ignition mechanisms of pulse detonator initiated scramjet cavity[J]. Proceedings of the Combustion Institute202138(3): 3853-3860.
6 MENG Y, GU H B, ZHUANG J H, et al. Experimental study of mode transition characteristics of a cavity-based scramjet combustor during acceleration[J]. Aerospace Science and Technology201993: 105316.
7 李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学: 技术科学202050(10): 1252-1273.
  LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. Scientia Sinica (Technologica)202050(10): 1252-1273 (in Chinese).
8 JU Y G, SUN W T. Plasma assisted combustion: Progress, challenges, and opportunities[J]. Combustion and Flame2015162(3): 529-532.
9 LIN B X, WU Y, ZHANG Z B, et al. Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures[J]. Combustion and Flame2017182: 102-113.
10 ZHONG H T, MAO X Q, ROUSSO A C, et al. Kinetic study of plasma-assisted n-dodecane/O2/N2 pyrolysis and oxidation in a nanosecond-pulsed discharge[J]. Proceedings of the Combustion Institute202138(4): 6521-6531.
11 TANG Y, SUN J G, SHI B L, et al. Extension of flammability and stability limits of swirling premixed flames by AC powered gliding arc discharges[J]. Combustion and Flame2021231: 111483.
12 SUN J G, TANG Y, LI S Q. Plasma-assisted stabilization of premixed swirl flames by gliding arc discharges[J]. Proceedings of the Combustion Institute202138(4): 6733-6741.
13 张军龙, 常军涛, 王瑄, 等. 基于支板稳燃的超声速火焰特性研究进展[J]. 空气动力学学报202038(3): 577-592.
  ZHANG J L, CHANG J T, WANG X, et al. Recent research progress on flame characteristics in strut-equipped scramjet combustor[J]. Acta Aerodynamica Sinica202038(3): 577-592 (in Chinese).
14 YANG K, WANG N, PAN Y, et al. Effect of cavity arrangement on the ignition mode of vaporized kerosene in supersonic flow[J]. Aerospace Science and Technology2021113: 106691.
15 TIAN Y, ZENG X J, YANG S H, et al. Study on the effects of thermal throat on flame stabilization in a kerosene fueled supersonic combustor[J]. Energy Conversion and Management2018166: 98-105.
16 REN Z X, WANG B, XIANG G M, et al. Supersonic spray combustion subject to scramjets: Progress and challenges[J]. Progress in Aerospace Sciences2019105: 40-59.
17 SONG X L, WANG H B, SUN M B, et al. Experimental study of near-blowoff characteristics in a cavity-based supersonic combustor[J]. Acta Astronautica2018151: 37-43.
18 OMBRELLO T, JU Y G, FRIDMAN A. Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma[J]. AIAA Journal200846(10): 2424-2433.
19 FRIDMAN A, GUTSOL A, GANGOLI S, et al. Characteristics of gliding arc and its application in combustion enhancement[J]. Journal of Propulsion and Power200824(6): 1216-1228.
20 GAO J L, KONG C D, ZHU J J, et al. Visualization of instantaneous structure and dynamics of large-scale turbulent flames stabilized by a gliding arc discharge[J]. Proceedings of the Combustion Institute201937(4): 5629-5636.
21 TAKITA K, UEMOTO T, SATO T, et al. Ignition characteristics of plasma torch for hydrogen jet in an airstream[J]. Journal of Propulsion and Power200016(2): 227-233.
22 BARBI E, MAHAN J R, O'BRIEN W F, et al. Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications[J]. Journal of Propulsion and Power19895(2): 129-133.
23 LEONOV S B, HOUPT A, HEDLUND B. Experimental demonstration of plasma-based flameholder in a model scramjet[C]∥Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017.
24 CAI Z, ZHU J J, SUN M B, et al. Spark-enhanced ignition and flame stabilization in an ethylene-fueled scramjet combustor with a rear-wall-expansion geometry[J]. Experimental Thermal and Fluid Science201892: 306-313.
25 KIMURA I, AOKI H, KATO M. The use of a plasma jet for flame stabilization and promotion of combustion in supersonic air flows[J]. Combustion and Flame198142: 297-305.
26 TAKITA K, MURAKAMI K, NAKANE H, et al. A novel design of a plasma jet torch igniter in a scramjet combustor[J]. Proceedings of the Combustion Institute200530(2): 2843-2849.
27 LI F, YU X L, TONG Y G, et al. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8[J]. Aerospace Science and Technology201328(1): 72-78.
28 LEONOV S, YARANTSEV D, NAPARTOVICH A, et al. Plasma-assisted ignition and flameholding in high-speed flow[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
29 LEONOV S B, YARANTSEV D A. Near-surface electrical discharge in supersonic airflow: Properties and flow control[J]. Journal of Propulsion and Power200824(6): 1168-1181.
30 LEONOV S B, YARANTSEV D A. Plasma-induced ignition and plasma-assisted combustion in high-speed flow[J]. Plasma Sources Science and Technology200716(1): 132-138.
31 FIRSOV A, SAVELKIN K V, YARANTSEV D A, et al. Plasma-enhanced mixing and flameholding in supersonic flow[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences2015373(2048): 20140337.
32 LEONOV S, ISAENKOV Y, SHNEIDER M, et al. High-power filamentary pulse discharge in supersonic flow[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
33 HAMMACK S D, OMBRELLO T M. Spatio-temporal evolution of cavity ignition in supersonic flow[J]. Proceedings of the Combustion Institute202138(3): 3845-3852.
34 OMBRELLO T M, CARTER C D, TAM C J, et al. Cavity ignition in supersonic flow by spark discharge and pulse detonation[J]. Proceedings of the Combustion Institute201535(2): 2101-2108.
35 AN B, YANG L C, WANG Z G, et al. Characteristics of laser ignition and spark discharge ignition in a cavity-based supersonic combustor[J]. Combustion and Flame2020212: 177-188.
36 HUANG S F, WU Y, SONG H M, et al. Experimental investigation of multichannel plasma igniter in a supersonic model combustor[J]. Experimental Thermal and Fluid Science201899: 315-323.
37 JU Y G, SUN W T. Plasma assisted combustion: Dynamics and chemistry[J]. Progress in Energy and Combustion Science201548: 21-83.
38 SONI J, ROY S. Low pressure characterization of dielectric barrier discharge actuators[J]. Applied Physics Letters2013102(11): 112908.
39 GOLDBERG B M, CHNG T L, DOGARIU A, et al. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation[J]. Applied Physics Letters2018112(6): 064102.
40 DALAINE V, CORMIER J M, LEFAUCHEUX P. A gliding discharge applied to H2S destruction[J]. Journal of Applied Physics199883(5): 2435-2441.
41 BO Z, WU E K, YAN J H, et al. Note: Gliding arc discharges with phase-chopped voltage supply for enhancement of energy efficiency in volatile organic compound decomposition[J]. Review of Scientific Instruments201384(1): 016105.
42 DO H, CAPPELLI M A, MUNGAL M G. Plasma assisted cavity flame ignition in supersonic flows[J]. Combustion and Flame2010157(9): 1783-1794.
43 SHAHRBABAKI A N, BAZAZZADEH M, KHOSHK? HOO R. Investigation on supersonic flow control using nanosecond dielectric barrier discharge plasma actuators[J]. International Journal of Aerospace Engineering20212021: 1-14.
44 ZHU J J, GAO J L, EHN A, et al. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure[J]. Physics of Plasmas201724(1): 013514.
45 JIA M, ZHANG Z B, CUI W, et al. Experimental investigation of a gliding discharge plasma jet igniter[J]. Chinese Journal of Aeronautics202235(6): 116-124.
46 WANG W Z, JIA M, FENG R, et al. Experimental investigation on the gliding arc plasma supported combustion in the scramjet combustor[J]. Acta Astronautica2020177: 133-141.
47 FENG R, HUANG Y H, ZHU J J, et al. Ignition and combustion enhancement in a cavity-based supersonic combustor by a multi-channel gliding arc plasma[J]. Experimental Thermal and Fluid Science2021120: 110248.
48 FENG R, ZHU J J, WANG Z G, et al. Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma[J]. Energy2021214: 118875.
49 LUO T G, ZHU J J, SUN M B, et al. MCGA-assisted ignition process and flame propagation of a scramjet at Mach 2.0[J/OL]. Chinese Journal of Aeronautics, (2023-03-29)[2023-05-11]. .
50 FENG R, ZHU J J, WANG Z G, et al. Dynamic characteristics of a gliding arc plasma-assisted ignition in a cavity-based scramjet combustor[J]. Acta Astronautica2020171: 238-244.
51 FENG R, WANG Z G, SUN M B, et al. Multi-channel gliding arc plasma-assisted ignition in a kerosene-fueled model scramjet engine[J]. Aerospace Science and Technology2022126: 107606.
52 FENG R, SUN M B, WANG H B, et al. Experimental investigation of flameholding in a cavity-based scramjet combustor by a multi-channel gliding arc[J]. Aerospace Science and Technology2022121: 107381.
53 TIAN Y, YANG S H, LE J L, et al. Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor[J]. International Journal of Hydrogen Energy201641(42): 19218-19230.
54 XIAO B G, XING J W, TIAN Y, et al. Experimental and numerical investigations of combustion mode transition in a direct-connect scramjet combustor[J]. Aerospace Science and Technology201546: 331-338.
55 ZHANG C L, CHANG J T, ZHANG Y S, et al. Flow field characteristics analysis and combustion modes classification for a strut/cavity dual-mode combustor[J]. Acta Astronautica2017137: 44-51.
56 CAI Z, SUN M B, WANG Z G, et al. Effect of cavity geometry on fuel transport and mixing processes in a scramjet combustor[J]. Aerospace Science and Technology201880: 309-314.
57 AGUILERA C, YU K H. Scramjet to ramjet transition in a dual-mode combustor with fin-guided injection[J]. Proceedings of the Combustion Institute201736(2): 2911-2918.
58 YU K, PANG B, HSU O. Implementing active combustion control in propulsion systems[C]∥Proceedings of the 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001.
59 汪洪波. 超声速气流中凹腔稳定的射流燃烧模式及振荡机制研究[D]. 长沙: 国防科技大学, 2012: 14-17.
  WANG H B. Combustion modes and oscillation mechanisms of cavity-stabilized jet combustion in supersonic flows[D]. Changsha: National University of Defense Technology, 2012: 14-17 (in Chinese).
60 MA F H, LI J A, YANG V, et al. Thermoacoustic flow instability in a scramjet combustor[C]∥Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005.
61 LIN K C, JACKSON K, BEHDADNIA R, et al. Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder[J]. Journal of Propulsion and Power201026(6): 1161-1170.
62 MICKA D J, DRISCOLL J F. Combustion characteristics of a dual-mode scramjet combustor with cavity flameholder[J]. Proceedings of the Combustion Institute200932(2): 2397-2404.
63 WANG H B, WANG Z G, SUN M B, et al. Combustion characteristics in a supersonic combustor with hydrogen injection upstream of cavity flameholder[J]. Proceedings of the Combustion Institute201334(2): 2073-2082.
64 ZHAO G Y, SUN M B, WU J S, et al. Investigation of flame flashback phenomenon in a supersonic crossflow with ethylene injection upstream of cavity flameholder[J]. Aerospace Science and Technology201987: 190-206.
65 赵国焱. 超声速气流中火焰闪回诱发与火焰传播机制研究[D]. 长沙: 国防科技大学, 2019: 3-6.
  ZHAO G Y. On the excitation of flame flashback and flame propagation mechanism in supersonic flow[D]. Changsha: National University of Defense Technology, 2019: 3-6 (in Chinese).
66 FOTIA M L, DRISCOLL J F. Ram-scram transition and flame/shock-train interactions in a model scramjet experiment[J]. Journal of Propulsion and Power201329(1): 261-273.
67 MATHUR T, GRUBER M, JACKSON K, et al. Supersonic combustion experiments with a cavity-based fuel injector[J]. Journal of Propulsion and Power200117(6): 1305-1312.
68 李大鹏, 丁猛, 梁剑寒, 等. Ma=4液体碳氢燃料超燃冲压发动机点火试验[J]. 推进技术200930(4): 385-389, 395.
  LI D P, DING M, LIANG J H, et al. Ignition experimental for liquid hydrocarbon fueled scramiet with simulated flight Mach 4[J]. Journal of Propulsion Technology200930(4): 385-389, 395 (in Chinese).
69 FROST M A, GANGURDE D Y, PAULL A, et al. Boundary-layer separation due to combustion-induced pressure rise in a supersonic flow[J]. AIAA Journal200947(4): 1050-1053.
70 席文雄, 王振国, 李庆, 等. 超声速气流中煤油喷雾的热射流强迫点火[J]. 航空动力学报201227(11): 2436-2441.
  XI W X, WANG Z G, LI Q, et al. Forced ignition of kerosene spray in supersonic airflow with hot gas injection[J]. Journal of Aerospace Power201227(11): 2436-2441 (in Chinese).
71 MITANI T, KOUCHI T. Flame structures and combustion efficiency computed for a Mach 6 scramjet engine[J]. Combustion and Flame2005142(3): 187-196.
72 WANG H B, WANG Z G, SUN M B, et al. Large-eddy/Reynolds-averaged Navier-Stokes simulation of combustion oscillations in a cavity-based supersonic combustor[J]. International Journal of Hydrogen Energy201338(14): 5918-5927.
73 NORDIN-BATES K, FUREBY C, KARL S, et al. Understanding scramjet combustion using LES of the HyShot II combustor[J]. Proceedings of the Combustion Institute201736(2): 2893-2900.
74 WANG Z G, SUN M B, WANG H B, et al. Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor[J]. Proceedings of the Combustion Institute201535(2): 2137-2144.
75 SUN M B, CUI X D, WANG H B, et al. Flame flashback in a supersonic combustor fueled by ethylene with cavity flameholder[J]. Journal of Propulsion and Power201531(3): 976-981.
76 龚诚. 超声速气流中点火、火焰传播实验与数值模拟研究[D]. 长沙: 国防科技大学, 2011: 35-39.
  GONG C. Experimental and numerical research of the ignition and flame propagation process in the supersonic flows[D]. Changsha: National University of Defense Technology, 2011: 35-39 (in Chinese).
77 潘余. 超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究[D]. 长沙: 国防科技大学, 2007: 101-103.
  PAN Y. Research on the combustion and flow process in the scramjet multi-cavity combustor[D]. Changsha: National University of Defense Technology, 2007: 101-103 (in Chinese).
78 LEONOV S B, ELLIOTT S, CARTER C, et al. Modes of plasma-stabilized combustion in cavity-based M=2 configuration[J]. Experimental Thermal and Fluid Science2021124: 110355.
79 FENG R, ZHU J J, WANG Z G, et al. Suppression of combustion mode transitions in a hydrogen-fueled scramjet combustor by a multi-channel gliding arc plasma[J]. Combustion and Flame2022237: 111843.
80 冯戎. 超声速气流中滑动弧等离子体强化点火和助燃技术研究[D]. 长沙: 国防科技大学, 2022: 116-119.
  FENG R. Investigation of gliding arc plasma-assisted ignition and combustion in a supersonic flow[D]. Changsha: National University of Defense Technology, 2022: 116-119 (in Chinese).
81 ELSABBAGH M, KADO S, IKEDA Y, et al. Measurements of rotational temperature and density of molecular nitrogen in spark-plug assisted atmospheric-pressure microwave discharges by rotational Raman scattering[J]. Japanese Journal of Applied Physics201150(7R): 076101.
82 MENG Y, GU H B, CHEN F. Influence of plasma on the combustion mode in a scramjet[J]. Aerospace20229(2): 73.
83 欧阳浩. 超燃冲压发动机燃烧室中的非稳态燃烧过程研究[D]. 长沙: 国防科技大学, 2018: 118-120.
  OUYANG H. Research on the unsteady combustion process in scramjet combustor[D]. Changsha: National University of Defense Technology, 2018: 118-120 (in Chinese).
84 李凡, 汪洪波, 孙明波, 等. 两种优化组合式燃料喷注方案的凹腔稳焰特性实验研究[J]. 固体火箭技术202144(2): 152-159.
  LI F, WANG H B, SUN M B, et al. Experiments on flame stabilization of two combined fuel injection schemes in a cavity-based combustor[J]. Journal of Solid Rocket Technology202144(2): 152-159 (in Chinese).
85 SAVELKIN K V, YARANTSEV D A, ADAMOVICH I V, et al. Ignition and flameholding in a supersonic combustor by an electrical discharge combined with a fuel injector[J]. Combustion and Flame2015162(3): 825-835.
86 VINOGRADOV V A, SHIKHMAN Y M, SEGAL C. A review of fuel pre-injection in supersonic, chemically reacting flows[J]. Applied Mechanics Reviews200760(4): 139-148.
87 RASMUSSEN C, DRISCOLL J. Blowout limits of flames in high-speed airflows: Critical damkohler number[C]∥Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2008.
88 DRISCOLL J F, RASMUSSEN C C. Correlation and analysis of blowout limits of flames in high-speed airflows[J]. Journal of Propulsion and Power200521(6): 1035-1044.
89 RASMUSSEN C C, DRISCOLL J F, CARTER C D, et al. Characteristics of cavity-stabilized flames in a supersonic flow[J]. Journal of Propulsion and Power200521(4): 765-768.
90 RASMUSSEN C C, DRISCOLL J F, HSU K Y, et al. Stability limits of cavity-stabilized flames in supersonic flow[J]. Proceedings of the Combustion Institute200530(2): 2825-2833.
91 ZHANG T C, WANG J, QI L, et al. Blowout limits of cavity-stabilized flame of supercritical kerosene in supersonic combustors[J]. Journal of Propulsion and Power201430(5): 1161-1166.
92 LEONOV S. Electrically driven supersonic combustion[J]. Energies201811(7): 1733.
93 LEONOV S, YARANTSEV D, CARTER C. Experiments on electrically controlled flameholding on a plane wall in supersonic airflow[J]. Journal of Propulsion and Power200925(2): 289-294.
94 LEONOV S, HOUPT A, ELLIOTT S, et al. Ethylene ignition and flameholding by electrical discharge in supersonic combustor[J]. Journal of Propulsion and Power201834(2): 499-509.
95 TAKITA K, SHISHIDO K, KURUMADA K. Ignition in a supersonic flow by a plasma jet of mixed feedstock including CH4 [J]. Proceedings of the Combustion Institute201133(2): 2383-2389.
96 TAKITA K, NAKANE H, MASUYA G. Optimization of double plasma jet torches in a scramjet combustor[J]. Proceedings of the Combustion Institute200731(2): 2513-2520.
97 MATSUBARA Y, TAKITA K, MASUYA G. Combustion enhancement in a supersonic flow by simultaneous operation of DBD and plasma jet[J]. Proceedings of the Combustion Institute201334(2): 3287-3294.
98 DUNN I, AHMED K A, LEIWEKE R J, et al. Optimization of flame kernel ignition and evolution induced by modulated nanosecond-pulsed high-frequency discharge[J]. Proceedings of the Combustion Institute202138(4): 6541-6550.
99 DO H, IM S K, CAPPELLI M A, et al. Plasma assisted flame ignition of supersonic flows over a flat wall[J]. Combustion and Flame2010157(12): 2298-2305.
100 TIAN Y F, ZHU J J, SUN M B, et al. Enhancement of blowout limit in a Mach 2.92 cavity-based scramjet combustor by a gliding arc discharge[J]. Proceedings of the Combustion Institute202339(4): 5697-5705.
101 ZHU Z F, LI B, GAO Q, et al. Long-gap ignition using femtosecond laser filament-triggered discharge[J]. Optics & Laser Technology2022156: 108611.
102 孟宇, 顾洪斌, 孙文明, 等. 微波增强滑移电弧等离子体辅助超声速燃烧[J]. 航空学报202041(2): 123345.
  MENG Y, GU H B, SUN W M, et al. Microwave enhanced gliding arc plasma assisted supersonic combustion[J]. Acta Aeronautica et Astronautica Sinica202041(2): 123345 (in Chinese).
文章导航

/