基于轨道可达域的机动航天器接近威胁规避方法
收稿日期: 2023-03-31
修回日期: 2023-04-28
录用日期: 2023-05-12
网络出版日期: 2023-05-15
基金资助
国家自然科学基金(12125207);青年人才托举工程(2021-JCJQ-QT-047)
Threat avoidance strategy of spacecraft maneuvering approach based on orbital reachable domain
Received date: 2023-03-31
Revised date: 2023-04-28
Accepted date: 2023-05-12
Online published: 2023-05-15
Supported by
National Natural Science Foundation of China(12125207);Young Elite Scientists Sponsorship Program(2021-JCJQ-QT-047)
面对日益复杂的空间安全形势,基于轨道机动可达域分析提出了机动航天器接近威胁计算、评估和规避方法。首先,基于可达性判据给出机动能力受限的航天器单脉冲轨道机动可达域求解方法。其次,通过判断在轨航天器自身轨道与来袭航天器机动可达域间的位置关系计算其位于威胁域内的区段,进而得到轨道危险区。再次,基于两航天器进出危险区的时间定义了威胁评价指标,从空间和时间的窗口匹配性角度分别评估在轨航天器受来袭航天器的威胁程度。最后,给出了基于最小化危险区的航天器最优多脉冲接近威胁规避策略,对比了多个脉冲方案结果。仿真结果表明,在轨航天器能够在满足给定约束条件下实现对危险区的机动避让,并以最小燃料消耗回归正常运行轨道。
张赛 , 杨震 , 杜向南 , 罗亚中 . 基于轨道可达域的机动航天器接近威胁规避方法[J]. 航空学报, 2024 , 45(4) : 328778 -328778 . DOI: 10.7527/S1000-6893.2023.28778
In the face of the increasingly complex space security situation, this paper proposes an approach based on spacecraft reachable domain for spacecraft maneuvering approach threat calculation, assessment, and avoidance. Firstly, a general method to solve the reachable domain for spacecraft with single limited-magnitude impulse based on the reachable criterion is presented. Secondly, the region in the threat domain of on-orbit spacecraft is calculated by judging the position relationship between its orbit and the reachable domain of incoming maneuvering spacecraft which is the danger area. Thirdly, a threat evaluation index is defined by means of the time two spacecraft enter and exit the danger area. The threat of on-orbit spacecraft is measured from two aspects: position matching and time window matching. Based on minimizing the danger area, an active avoidance strategy of spacecraft with optimum multi-impulses maneuver is given to avoid the danger area. The simulations show that the on-orbit spacecraft can avoid the danger area while satisfying the given constraint conditions, and return to the proper orbit with minimum fuel consumption.
1 | KLISAUSKAITE V. China Space Station avoids near-collision with Starlink satellites[EB/OL]. (2021-12-29)[2023-03-29]. . |
2 | 籍润泽, 陈国玖, 张瑜, 等. 美国太空军建设发展动向研究[J]. 中国航天, 2022(10): 56-61. |
JI R Z, CHEN G J, ZHANG Y, et al. Development trend of the US space force[J]. Aerospace China, 2022(10): 56-61 (in Chinese). | |
3 | 高振良, 孙小凡, 刘育强, 等. 航天器在轨延寿服务发展现状与展望[J]. 航天器工程, 2022, 31(4): 98-107. |
GAO Z L, SUN X F, LIU Y Q, et al. Development and prospect of spacecraft on-orbit life extension servicing[J]. Spacecraft Engineering, 2022, 31(4): 98-107 (in Chinese). | |
4 | 张赛, 杨震, 罗亚中. 地固系下航天器单脉冲轨道机动可达域求解算法[J]. 力学与实践, 2022, 44(6): 1286-1296. |
ZHANG S, YANG Z, LUO Y Z. An algorithm for solving spacecraft reachable domain with single-impulse maneuvering in ECEF coordinate system[J]. Mechanics in Engineering, 2022, 44(6): 1286-1296 (in Chinese). | |
5 | CARUSO A, NICCOLAI L, QUARTA A A, et al. Envelopes of spacecraft trajectories with a single impulse[J]. Aerotecnica Missili & Spazio, 2019, 98(4): 293-299. |
6 | VINH N X, GILBERT E G, HOWE R M, et al. Reachable domain for interception at hyperbolic speeds[J]. Acta Astronautica, 1995, 35(1): 1-8. |
7 | BATTIN R H. An introduction to the mathematics and methods of astrodynamics[M]. Revised edition. Reston: AIAA, 1999. |
8 | XUE D, LI J F, BAOYIN H X, et al. Reachable domain for spacecraft with a single impulse[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(3): 934-942. |
9 | WEN C X, ZHAO Y S, SHI P. Precise determination of reachable domain for spacecraft with single impulse[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1767-1779. |
10 | 杜向南, 杨震. 航天器单脉冲机动可达域求解算法[J]. 力学学报, 2020, 52(6): 1621-1631. |
DU X N, YANG Z. An algorithm for solving spacecraft reachable domain with single-impulse maneuvering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1621-1631 (in Chinese). | |
11 | ZHANG H Y, ZHANG G. Reachable domain of ground track with a single impulse[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1105-1122. |
12 | WEN C X, GAO Y, SHI H. Three-dimensional relative reachable domain with initial state uncertainty in Gaussian distribution[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(5): 1555-1570. |
13 | XIA C Y, ZHANG G, GENG Y H. Reachable domain with a single coplanar impulse considering the target-visit constraint[J]. Advances in Space Research, 2022, 69(10): 3847-3855. |
14 | WEN C X, QIAO D. Calculating collision probability for long-term satellite encounters through the reachable domain method[J]. Astrodynamics, 2022, 6(2): 141-159. |
15 | 温昶煊. 面向空间态势感知的可达范围理论与应用研究[D]. 北京: 北京航空航天大学, 2015. |
WEN C X. Space situational awareness oriented research on theory and application of reachable domain[D]. Beijing: Beihang University, 2015 (in Chinese). | |
16 | GONG H R, GONG S P, LI J F. Pursuit–evasion game for satellites based on continuous thrust reachable domain[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4626-4637. |
17 | VENIGALLA C, SCHEERES D J. Delta-V-based analysis of spacecraft pursuit–evasion games[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(11): 1961-1971. |
18 | 杜向南. 航天器机动可达域表征与威胁规避[D]. 长沙: 国防科技大学, 2021. |
DU X N. Characterization of spacecraft maneuverability and threat avoidance[D].Changsha: National University of Defense Technology, 2021 (in Chinese). | |
19 | LI J S, YANG Z, LUO Y Z. A review of space-object collision probability computation methods[J]. Astrodynamics, 2022, 6(2): 95-120. |
20 | LE MAY S, GEHLY S, CARTER B A, et al. Space debris collision probability analysis for proposed global broadband constellations[J]. Acta Astronautica, 2018, 151: 445-455. |
21 | 于大腾, 王华, 孙福煜. 考虑潜在威胁区的航天器最优规避机动策略[J]. 航空学报, 2017, 38(1): 320202. |
YU D T, WANG H, SUN F Y. Optimal evasive maneuver strategy with potential threatening area being considered[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 320202 (in Chinese). | |
22 | ZHOU W M, WANG H, TANG G J, et al. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network[J]. Advances in Space Research, 2016, 58(6): 938-949. |
23 | 于大腾, 王华, 周晚萌. 考虑空间几何关系的反交会规避机动方法[J]. 国防科技大学学报, 2016, 38(6): 89-94. |
YU D T, WANG H, ZHOU W M. Anti-rendezvous evasive maneuver method considering space geometrical relationship[J]. Journal of National University of Defense Technology, 2016, 38(6): 89-94 (in Chinese). | |
24 | WANG S Q, SCHAUB H. Spacecraft collision avoidance using coulomb forces with separation distance and rate feedback[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 740-750. |
25 | 郑重, 宋申民. 考虑避免碰撞的编队卫星自适应协同控制[J]. 航空学报, 2013, 34(8): 1934-1943. |
ZHENG Z, SONG S M. Adaptive coordination control of satellites within formation considering collision avoidance[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8): 1934-1943 (in Chinese). | |
26 | 赵力冉, 党朝辉, 张育林. 空间轨道博弈: 概念、原理与方法[J]. 指挥与控制学报, 2021, 7(3): 215-224. |
ZHAO L R, DANG Z H, ZHANG Y L. Orbital game: Concepts, principles and methods[J]. Journal of Command and Control, 2021, 7(3): 215-224 (in Chinese). | |
27 | 许旭升, 党朝辉, 宋斌, 等. 基于多智能体强化学习的轨道追逃博弈方法[J]. 上海航天(中英文), 2022, 39(2): 24-31. |
XU X S, DANG Z H, SONG B, et al. Method for cluster satellite orbit pursuit-evasion game based on multi-agent deep deterministic policy gradient algorithm[J]. Aerospace Shanghai (Chinese & English), 2022, 39(2): 24-31 (in Chinese). | |
28 | HAN H Y, DANG Z H. Optimal delta-V-based strategies in orbital pursuit-evasion games[J]. Advances in Space Research, 2023, 72(2): 243-256. |
29 | ZHAO L R, ZHANG Y L, DANG Z H. PRD-MADDPG: An efficient learning-based algorithm for orbital pursuit-evasion game with impulsive maneuvers[J]. Advances in Space Research, 2023, 72(2): 211-230. |
30 | LI Z Y, ZHU H, YANG Z, et al. A dimension-reduction solution of free-time differential games for spacecraft pursuit-evasion[J]. Acta Astronautica, 2019, 163: 201-210. |
31 | ZHU Y H, LUO Y Z, ZHANG J. Packing programming of space station spacewalk events based on bin packing theory and differential evolution algorithm[C]∥ 2016 IEEE Corgress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2016: 877-884. |
/
〈 |
|
〉 |