基于改进粒子群算法的直升机动力涡轮转子系统优化方法
收稿日期: 2023-02-24
修回日期: 2023-03-27
录用日期: 2023-05-10
网络出版日期: 2023-05-15
An optimization method for helicopter power turbine rotor system based on improved particle swarm optimization algorithm
Received date: 2023-02-24
Revised date: 2023-03-27
Accepted date: 2023-05-10
Online published: 2023-05-15
针对直升机动力涡轮转子变转速工作范围增大、临界转速难布局、转子弯曲模态振动控制困难的问题,提出一种基于改进粒子群算法的动力涡轮转子系统优化方法。采用有限元法,建立变转速涡轴发动机转子系统动力学模型,分析动力涡轮转子的动力学特性。基于改进粒子群优化算法,提出直升机动力涡轮转子系统的动力学优化设计目标,系统性地建立变转速动力涡轮转子系统优化设计流程。搭建了模拟转子实验系统,完成优化前后的对比测试实验。实验结果表明,优化方案下转子振动幅值相比原方案下降73.5%,能够实现的稳定变转速工作范围由77.5%~100%最高工作转速扩大为55%~100%最高工作转速,验证了所建立的动力学优化设计方法的有效性,为发动机动力涡轮转子系统设计提供了参考。
王四季 , 张羽薇 , 黄开明 , 吕彪 , 赵海凤 , 王虎 , 廖明夫 . 基于改进粒子群算法的直升机动力涡轮转子系统优化方法[J]. 航空学报, 2024 , 45(1) : 228608 -228608 . DOI: 10.7527/S1000-6893.2023.28608
Targeting the problems of increasing variable speed working range, complex critical speed layout and difficult rotor vibration control of helicopter power turbine rotors, a rotor system optimization method of variable speed turboshaft engine based on Improved Particle Swarm Optimization (IPSO) algorithm is proposed. Firstly, by using the finite element method, the dynamic model for the rotor system of the variable speed turboshaft engine is established and the dynamic characteristics of the power turbine rotor are analyzed. Secondly, based on the IPSO, the dynamic optimization design objective of helicopter rotor system is proposed and the optimization design process of variable speed power turbine rotor system is systematically established. Finally, the simulation rotor experiment system is built to conduct the comparison test before and after optimization. The experimental results show that the rotor vibration amplitude decreases by 73.5% under the optimized scheme compared with the original scheme, and the working range of stable variable speed is increased from 77.5%-100% to 55%-100%, which verifies the effectiveness of the established dynamic optimization design method and provides a reference for the design of helicopter rotor systems.
1 | 银越千, 金海良, 陈璇. 涡轴/涡桨发动机压气机流动特点与发展趋势[J]. 航空学报, 2017, 38(9): 521011. |
YIN Y Q, JIN H L, CHEN X. Flow features and developing trends of compressor in turboshaft/turboprop engine[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 521011 (in Chinese). | |
2 | 李概奇, 马东阳, 李杜. 等 . 新研民用涡轴发动机起飞状态喘振试验[J]. 航空学报, 2023, 44(14): 628190. |
LI G Q, MA D Y, LI D, et al. Surge test on newly developing civil turboshaft engine under take?off condition[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628190 (in Chinese). | |
3 | HOWARD S, SERVER N. Rotordynamic feasibility of a conceptual variable-speed power turbine propulsion system for large civil tilt-rotor applications[C]∥The 68th Annual Forum and Technology Display. Washington, D. C.: NASA, 2012. |
4 | 王瑞, 廖明夫, 程荣辉, 等. 带中介轴承双转子系统的“可容模态”优化设计方法[J/OL]. 航空动力学报, (2022-11-07) [2023-02-01]. . |
WANG R, LIAO M F, CHENG R H, et al. Workable mode optimization design method for dual-rotor system with inter-shaft bearing [J/OL]. Journal of Aerospace Power, (2022-11-07) [2023-02-01]. (in Chinese). | |
5 | 王四季, 廖明夫, 刘永泉, 等. 航空发动机轴承外环装配工艺引起的转子系统非线性振动[J]. 航空动力学报, 2015, 30(1): 82-89. |
WANG S J, LIAO M F, LIU Y Q, et al. Nonlinear vibration of rotor systems caused by assembly process of a bearing outer ring of an aero-engine[J]. Journal of Aerospace Power, 2015, 30(1): 82-89 (in Chinese). | |
6 | ZHANG F L, ZHANG Y W, GUAN J Y, et al. Fault dynamic modeling and characteristic parameter simulation of rolling bearing with inner ring local defects[J]. Shock and Vibration, 2021, 2021: 1-11. |
7 | WANG N F, JIANG D X, XU H Z. Dynamic characteristics analysis of a dual-rotor system with inter-shaft bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(3): 1147-1158. |
8 | RUHL R L, BOOKER J F. A finite element model for distributed parameter turborotor systems[J]. Journal of Engineering for Industry, 1972, 94(1): 126-132. |
9 | NELSON H D. A finite rotating shaft element using Timoshenko beam theory[J]. ASME Journal of Mechanical Design, 1980, 102(4): 793-803. |
10 | GREENHILL L M, BICKFORD W B, NELSON H D. A conical beam finite element for rotor dynamics analysis[J]. Journal of Vibration and Acoustics, 1985, 107(4): 421-430. |
11 | KIM B O, LEE A S. A transient response analysis in the state-space applying the average velocity concept[J]. Journal of Sound and Vibration, 2005, 281(3-5): 1023-1035. |
12 | DAKEL M, BAGUET S, DUFOUR R. Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings[J]. Journal of Sound and Vibration, 2014, 333(10): 2774-2799. |
13 | PAN W J, LI X M, LING L Y, et al. Dynamic modeling and response analysis of rub-impact rotor system with squeeze film damper under maneuvering load[J]. Applied Mathematical Modelling, 2023, 114: 544-582. |
14 | 隋永枫, 潘慧斌, 隋艺, 等. 陀螺转子动力学系统的时间有限元内点法[J]. 振动与冲击, 2020, 39(14): 75-79. |
SUI Y F, PAN H B, SUI Y, et al. Interval combination method of time domain finite element analysis for gyroscopic systems[J]. Journal of Vibration and Shock, 2020, 39(14): 75-79 (in Chinese). | |
15 | BARRETT L E, GUNTER E J, ALLAIRE P E. Optimum bearing and support damping for unbalance response and stability of rotating machinery[J]. Journal of Engineering for Power, 1978, 100(1): 89-94. |
16 | RAJAN M, RAJAN S D, NELSON H D, et al. Optimal placement of critical speeds in rotor-bearing systems[J]. Journal of Vibration and Acoustics, 1987, 109(2): 152-157. |
17 | CROSSLEY W, WELLS V, LAANANEN D. The potential of genetic algorithms for conceptual design of rotor systems[J]. Engineering Optimization, 1995, 24(3): 221-238. |
18 | 黄太平, 罗贵火. 转子动力学优化设计[J]. 航空动力学报, 1994, 9(2): 113-116. |
HUANG T P, LUO G H. Optimization of rotor dynamics[J]. Journal of Aerospace Power, 1994, 9(2): 113-116. (in Chinese) | |
19 | LIN Y, CHENG L, HUANG T P. Optimal design of complex flexible rotor-support systems using minimum strain energy under multi-constraint conditions[J]. Journal of Sound and Vibration, 1998, 215(5): 1121-1134. |
20 | 金路. 航空发动机转子系统动力学设计优化方法研究[D]. 西安: 西北工业大学, 2013. |
JIN L. Research on optimization method for dynamic design of aeroengine rotor system[D]. Xi’an: Northwest University of Technology, 2013 (in Chinese). | |
21 | AHMAD B, KHALIL D, ABDELKHALAK E H. Robust method for the identification of dynamical anisotropic flexible bearing parameters using multi-objective optimization and structural modification technique[J]. Mechanical Systems and Signal Processing, 2023, 187: 109899. |
22 | 姜磊. 柔性转子-支承系统有限元仿真及多目标优化设计[J]. 原子能科学技术, 2021, 55(): 327-334. |
JIANG L. Finite element analysis and multi-objective optimization of flexible rotor-bearing system[J]. Atomic Energy Science and Technology, 2021, 55(Sup 2): 327-334 (in Chinese). | |
23 | KENNEDY J, EBERHART R. Particle swarm optimization[C]∥Proceedings of ICNN'95 - International Conference on Neural Networks. Piscataway: IEEE Press, 2002: 1942-1948. |
24 | 杨璇, 白宇杰, 吴庭苇. 基于粒子群方法的转子-支承系统临界转速振动性能优化[J]. 科技视界, 2020(31): 94-96. |
YANG X, BAI Y J, WU T W. Optimization of critical speed vibration performance of rotor-support system based on particle swarm optimization[J]. Science & Technology Vision, 2020(31): 94-96 (in Chinese). |
/
〈 |
|
〉 |