序列式低轨星座全连通网络拓扑结构设计方法
收稿日期: 2023-02-22
修回日期: 2023-04-03
录用日期: 2023-05-06
网络出版日期: 2023-05-15
基金资助
国家自然科学基金(12125207);载人航天工程科技创新团队资助
Sequence-based fully-connected network topology design method for LEO constellation
Received date: 2023-02-22
Revised date: 2023-04-03
Accepted date: 2023-05-06
Online published: 2023-05-15
Supported by
National Natural Science Foundation of China(12125207);the from Technology Innovation Team of Manned Space Engineering
全连通的拓扑结构是确保低轨(LEO)混合星座卫星间顺利进行信息传输的关键因素之一,然而,在设计星座拓扑结构过程中,随卫星数量增多,设计解空间呈指数型扩张,如何从巨大的解空间中获得满足多种约束的较优解是一大难点。针对低轨混合构型星座整体及局部卫星群,提出序列式全连通拓扑结构设计方法,打破了传统拓扑结构设计策略对星座构型的限制,解决了现有混合星座拓扑结构设计思路无法确保连通性需求的问题。首先,定义了星座链路评价指标矩阵,建立了基于图论的星座网络拓扑结构设计问题数学模型。然后,基于星座全连通的任务需求,提出序列式拓扑结构设计方法,将拓扑结构邻接矩阵求解问题转换为全连接序列规划问题,同时使用蚁群算法(ACO)优化生成全连接序列。最后,针对LEO混合星座整体及Starlink局部卫星星群设计了拓扑结构,分别验证了所提方法在连通性方面的优势以及对混合构型星座及任意空间分布卫星群的适用性。结果表明:在单星建链数量极少的条件下,所提出的方法也能够满足星座全连通任务需求;同时,该方法不受卫星空间分布限制,可对任意构型下的混合星座整体或局部卫星群设计对应的强连通拓扑结构。
肖瑶 , 郭帅 , 杨震 , 罗亚中 . 序列式低轨星座全连通网络拓扑结构设计方法[J]. 航空学报, 2023 , 44(24) : 328600 -328600 . DOI: 10.7527/S1000-6893.2023.28600
The fully-connected topology of Low Earth Orbit (LEO) hybrid constellation is one of key factors to ensure the required communication capability. However, the solution space expands exponentially with the increase of the number of satellites in designing the topology structure, which makes the problem of solving an optimal topology structure more difficult. In this paper, a sequence-based fully-connected topology design method is proposed for the overall or partial satellites of LEO hybrid constellation. The proposed method overcomes the limitation of constellation configuration using the traditional topology design strategy and the uncertainty of full connectivity. Firstly, a constellation Inter-Satellite Link (ISL) evaluation matrix is defined, and a mathematical model for the constellation network topology is established based on the graph theory. Then, considering the requirement of fully-connectivity, a sequence-based topology design method is proposed, which transforms the adjacency matrix solving problem into a fully-connected sequence design problem. The Ant Colony Optimization (ACO) algorithm is used to generate and optimize the fully-connected sequence. Finally, the topologies of the LEO hybrid constellation and the local satellite collection in Starlink are designed to illustrate the advantages of the proposed method in terms of connectivity and verify its applicability to any distributed satellite collection. The results show that the proposed method can meet the full connectivity requirements when the number of ISLs of each satellite is extremely small. Meanwhile, the method proposed is not limited by the configuration of constellation or satellite collection, and can be used to design the strong connectivity topology for entire constellation or local satellite collection.
1 | 谭立英, 黄波. 中低轨道卫星星座间的激光链路[J]. 遥测遥控, 1998, 19(4): 62-65. |
TAN L Y, HUANG B. Laser intersatellite links in satellite constellation of middle and low earth orbit[J]. Telemetry & Telecontrol, 1998, 19(4): 62-65 (in Chinese). | |
2 | 郭丽荣. 低轨道卫星星座的拓扑结构设计[D]. 北京: 北京交通大学, 2021. |
GUO L R. Topological structure design of low-orbit satellite constellation[D]. Beijing: Beijing Jiaotong University, 2021 (in Chinese). | |
3 | SUZUKI R, YASUDA Y. Study on ISL network structure in LEO satellite communication systems[J]. Acta Astronautica, 2007, 61(7-8): 648-658. |
4 | 黄铮. 北斗激光链路网络拓扑结构研究[D]. 北京: 中国科学院大学, 2021. |
HUANG Z. Research on topology structure of Beidou laser link network[D].Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese). | |
5 | 王占伟. 低轨卫星星座的网络拓扑构型设计[D]. 西安: 西安电子科技大学, 2021. |
WANG Z W. Network topology design of low earth orbit satellite constellations[D]. Xi’an: Xidian University, 2021 (in Chinese). | |
6 | CHAUDHRY A U, YANIKOMEROGLU H. Free space optics for next-generation satellite networks[J]. IEEE Consumer Electronics Magazine, 2021, 10(6): 21-31. |
7 | CHAUDHRY A U, YANIKOMEROGLU H. Laser intersatellite links in a starlink constellation: A classification and analysis[J]. IEEE Vehicular Technology Magazine, 2021, 16(2): 48-56. |
8 | ZHU Q Y, TAO H C, CAO Y H, et al. Laser inter-satellite link visibility and topology optimization for mega constellation[J]. Electronics, 2022, 11(14): 2232. |
9 | LIU J M, XING L N, WANG L, et al. A data-driven parallel adaptive large neighborhood search algorithm for a large-scale inter-satellite link scheduling problem[J]. Swarm and Evolutionary Computation, 2022, 74: 101124. |
10 | 燕洪成, 张庆君, 孙勇. 星间链路数量受限的导航卫星网络链路分配问题[J]. 航空学报, 2015, 36(7): 2329-2339. |
YAN H C, ZHANG Q J, SUN Y. Link assignment problem of navigation satellite networks with limited number of inter-satellite links[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2329-2339 (in Chinese). | |
11 | XU B B, HAN K, REN Q Y, et al. An optimized strategy for inter-satellite links assignments in GNSS[J]. Advances in Space Research, 2023, 71(1): 720-730. |
12 | YAN Z B, ZHAO K L, LI W F, et al. Topology design for GNSSs under polling mechanism considering both inter-satellite links and ground-satellite links[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 2084-2097. |
13 | 阮永井, 胡敏, 云朝明. 低轨巨型星座构型设计与控制研究进展与展望[J]. 中国空间科学技术, 2022, 42(1): 1-15. |
RUAN Y J, HU M, YUN C M. Advances and prospects of the configuration design and control research of the LEO mega-constellations[J]. Chinese Space Science and Technology, 2022, 42(1): 1-15 (in Chinese). | |
14 | 白雪, 王丹丹, 白照广, 等. 低轨大规模星座概念研究与分阶段部署方案[J]. 南京航空航天大学学报, 2022, 54(S): 1-8. |
BAI X, WANG D D, BAI Z G, et al. Conceptual study on low-orbit large-scale constellation and its phased deployment scheme[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(S): 1-8 (in Chinese). | |
15 | JIA L, ZHANG Y S, YU J L, et al. Design of mega-constellations for global uniform coverage with inter-satellite links[J]. Aerospace, 2022, 9(5): 234. |
16 | 韩松辉, 归庆明, 李建文, 等. 混合星座星间链路的建立以及连通性和稳健性分析[J]. 武汉大学学报(信息科学版), 2012, 37(9): 1014-1019. |
HAN S H, GUI Q M, LI J W, et al. Analysis of establishment criteria, connectivity and robustness of inter-satellite link in mixed constellation[J]. Geomatics and Information Science of Wuhan University, 2012, 37(9): 1014-1019 (in Chinese). | |
17 | 张凌, 李亚栋, 刘浩. 基于激光链路的星间信息传输与仿真研究[J]. 中国检验检测, 2022, 30(1): 13-16. |
ZHANG L, LI Y D, LIU H. Research on inter-satellite navigation data transmission and simulation based on laser link network[J]. China Inspection Body & Laboratory, 2022, 30(1): 13-16 (in Chinese). | |
18 | 韩凯, 董日昌, 邵丰伟, 等. 基于改进遗传算法的导航卫星星间链路网络动态拓扑优化技术[J]. 航空学报, 2022, 43(9): 326095. |
HAN K, DONG R C, SHAO F W, et al. Dynamic topology optimization of navigation satellite inter-satellite links network based on improved genetic algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 326095 (in Chinese). | |
19 | 张大坤, 王亚沙, 王光兴. LEO、MEO卫星网络星间链路图两种新表示方法的提出与实现[J]. 小型微型计算机系统, 2006, 27(4): 577-581. |
ZHANG D K, WANG Y S, WANG G X. Proposition and implementation on the two new representation methods for LEO, MEO satellite network intersatellite link map[J]. Journal of Chinese Computer Systems, 2006, 27(4): 577-581 (in Chinese). | |
20 | 何善宝, 李振东, 刘崇华. 星间网络拓扑的二分图及其关联矩阵表示法[J]. 航天器工程, 2009, 18(4): 25-29. |
HE S B, LI Z D, LIU C H. A method representing inter-satellite network topology with bipartite graph and its incidence matrix[J]. Spacecraft Engineering, 2009, 18(4): 25-29 (in Chinese). | |
21 | 卜月华, 王维凡, 吕新忠. 图论及其应用[M]. 2版. 南京: 东南大学出版社, 2015. |
BU Y H, WANG W F, LV X Z. Graph theory and its application[M]. 2nd ed. Nanjing: Southeast University Press, 2015 (in Chinese). | |
22 | 程洪玮, 佟首峰, 张鹏. 卫星激光通信总体技术[M]. 北京: 科学出版社, 2020. |
CHENG H W, TONG S F, ZHANG P. General technology of satellite laser communications[M]. Beijing: Science Press, 2020 (in Chinese). | |
23 | 范丽. 卫星星座一体化优化设计研究[D]. 长沙: 国防科学技术大学, 2006. |
FAN L. Study on integrated design optimization of satellite constellation[D]. Changsha: National University of Defense Technology, 2006 (in Chinese). | |
24 | ZENG L C, LU X C, BAI Y, et al. Topology design algorithm for optical inter-satellite links in future navigation satellite networks[J]. GPS Solutions, 2022, 26(2): 57. |
25 | DORIGO M. Optimization, learning and natural algorithms[D]. Milano: Politecnico Di Milano, 1992. |
26 | CHEN Q, GIAMBENE G, YANG L, et al. Analysis of inter-satellite link paths for LEO mega-constellation networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2743-2755. |
27 | 何旭. 基于抗毁性的卫星通信系统可靠性研究[D]. 成都: 电子科技大学, 2013. |
HE X. Study on satellite communication system’s reliability based on invulnerability[D]. Chengdu: University of Electronic Science and Technology of China, 2013 (in Chinese). | |
28 | 张景楠, 李华旺, 朱野, 等. 一种评估LEO卫星通信网络抗毁性的新方法研究[J]. 计算机与数字工程, 2014, 42(9): 1645-1648. |
ZHANG J N, LI H W, ZHU Y, et al. A new method of evaluation of LEO satellite communication network survivability[J]. Computer & Digital Engineering, 2014, 42(9): 1645-1648 (in Chinese). | |
29 | CHANG H S, KIM B W, LEE C G, et al. FSA-based link assignment and routing in low-earth orbit satellite networks[J]. IEEE Transactions on Vehicular Technology, 1998, 47(3): 1037-1048. |
30 | CelesTrak: Current GP element sets[EB/OL]. [2023-04-06]. . |
/
〈 |
|
〉 |