综述

高功率波加热磁等离子体推力器研究现状与展望

  • 杨雄 ,
  • 李小康 ,
  • 郭大伟 ,
  • 程谋森 ,
  • 张帆 ,
  • 车碧轩 ,
  • 雷清雲
展开
  • 1.国防科技大学 空天科学学院,长沙 410073
    2.北京跟踪与通信技术研究所,北京 100094
.E-mail: mscheng@nudt.edu.cn

收稿日期: 2023-03-29

  修回日期: 2023-04-17

  录用日期: 2023-05-07

  网络出版日期: 2023-05-12

基金资助

国家自然科学基金(11805275);空天前沿方向培育项目

Research status and prospect of high⁃power wave⁃heating magnetoplasma thruster

  • Xiong YANG ,
  • Xiaokang LI ,
  • Dawei GUO ,
  • Mousen CHENG ,
  • Fan ZHANG ,
  • Bixuan CHE ,
  • Qingyun LEI
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.Beijing Institute of Tracking and Telecommunications Technology,Beijing 100094,China

Received date: 2023-03-29

  Revised date: 2023-04-17

  Accepted date: 2023-05-07

  Online published: 2023-05-12

Supported by

National Natural Science Foundation of China(11805275);Cultivation Project on Aerospace Frontier Research

摘要

波加热磁等离子体推力器具有适于高功率运行(约100 kWe~1 MWe)、高推力密度(约4×105 N/m2)、可变推力(约1~100 N) 和可变比冲(约3 000~10 000 s)等优点,是适用于未来多种空间任务的高性能电推力器。结合波加热磁等离子体推力器的发展历程,梳理了近年来波加热磁等离子体推力器的国内外研究现状,总结了其发展面临的单程离子回旋共振加热、等离子体分离控制、强磁场中高密度等离子体诊断等理论问题,以及高效热管理、高功率射频电源等工程难点。最后,根据波加热磁等离子体推力器的特点,对其具体应用方向做出了展望。

本文引用格式

杨雄 , 李小康 , 郭大伟 , 程谋森 , 张帆 , 车碧轩 , 雷清雲 . 高功率波加热磁等离子体推力器研究现状与展望[J]. 航空学报, 2024 , 45(7) : 28761 -028761 . DOI: 10.7527/S1000-6893.2023.28761

Abstract

The wave-heating magnetoplasma thruster possesses many advantages such as its suitability for high power propulsion (about 100 kWe-1 MWe), high thrust density (about 4×105 N/m2), variable high thrust (about 1-100 N), and adjustable specific impulse (about 3 000-10 000 s). These advantages make the wave-heating magnetoplasma thruster well suited for a diverse range of future space missions with high-performance. Based on previous studies of the wave-heating magnetoplasma thruster both home and abroad, this work summarizes the technical status of the wave-heating magnetoplasma thruster in recent years, and analyzes the theoretical issues the present research faced in the development of the wave-heating magnetoplasma thruster, such as the so called single-pass ion cyclotron resonance heating, the plasma detachment controlling, the high-power density plasma diagnosing in strong magnetic fields, as well as many engineering difficulties, including the efficient thermal management and high-power RF power supplies. Finally, application directions of the wave-heating magnetoplasma thruster are prospected according to its performance characteristics.

参考文献

1 耿海, 李婧, 吴辰宸, 等. 空间电推进技术发展及应用展望[J]. 气体物理20238(1): 1-16.
  GENG H, LI J, WU C C, et al. Development and application prospect of space electric propulsion technology[J]. Physics of Gases20238(1): 1-16 (in Chinese).
2 PALAC D, HORVAT G, JANKOVSKY R, et al. Shrinking the solar system nuclear electric propulsion systems for robotic and human exploration[C]∥ Proceedings of the 1st Space Exploration Conference: Continuing the Voyage of Discovery. Reston: AIAA, 2005.
3 RANDOLPH T M, POLK J E. An overview of the Nuclear Electric Xenon Ion System(NEXIS) activity[C]∥ 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2004.
4 ELLIOTT F, FOSTER J, PATTERSON M. An overview of the high power electric propulsion (HiPEP) project[C]∥ Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004.
5 HALL S J, FLORENZ R E, GALLIMORE A, et al. Implementation and initial validation of a 100-kWe class nested-channel Hall thruster[C]∥ Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2014.
6 FLORENZ R E, HALL S J, GALLIMORE A D,et al. First firing of a 100-kWe nested-channel hall thruster[C]∥ 33rd International Electric Propulsion Conference, 2013.
7 任军学, 刘宇, 王一白. 可变比冲磁等离子体火箭原理与研究进展[J]. 火箭推进200733(3): 36-42.
  REN J X, LIU Y, WANG Y B. Principle and research progress of variable specific impulse magnetoplasma rocket[J]. Journal of Rocket Propulsion200733(3): 36-42 (in Chinese).
8 Ad Astra Rocket Company. Solar Electric Propulsion (SEP): Comparing the power niches for SEP-VASIMR? and SEP-Hall technologies[R]. Webster: Ad Astra Rocket Company, 2014.
9 李永, 周成, 吕征, 等. 大功率空间核电推进技术研究进展[J]. 推进技术202041(1): 12-27.
  LI Y, ZHOU C, LYU Z, et al. Progress on high power space nuclear electric propulsion technology development[J]. Journal of Propulsion Technology202041(1): 12-27 (in Chinese).
10 LOVBERG R, DAILEY C. PIT mark V design: AIAA-1991-3571[R]. Reston: AIAA, 1991.
11 SQUIRE J P, CHANG-DíAZ F R, CARTER M D, et al. High power VASIMR experiments using deuterium, neon and argon[C]∥ 30th International Electric Propulsion Conference, 2007.
12 BERING E, BRUKARDT M, SQUIRE J, et al. Recent improvements in ionization costs and ion cyclotron heating efficiency in the VASMIR engine[C]∥ Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
13 Longmier B W, SQUIRE J P, CASSADY L D, et al. VASIMR? VX-200 performance measurements and helicon throttle tables using argon and krypton[C]∥ 32nd International Electric Propulsion Conference, 2011.
14 韩先伟,魏建国,孙斌,等. 大推力磁等离子体发动机技术分析与研究进展[C]∥ 第十一届中国电推进技术学术研讨会, 2015.
  HAN X W, WEI J G, SUN B, et al. Technical analysis and research progress of high thrust magnetic plasma engine[C]∥ 11th China Electric Propulsion Conference (CEPC 2015), 2015 (in Chinese).
15 Ad Astra Rocket Company. VASIMR? VX-200SS plasma rocket completes record hour high-power endurance test [R]. Webster: Ad Astra Rocket Company, 2021.
16 Ad Astra Rocket Company. La República–El motor de plasma [EB/OL]. (2022-10-07) [2023-05-07]. .
17 CORRIGAN A M H, CARTER M D, SQUIRE J P, et al. Enhancing VASIMR? with maturing technologies: AIAA-2018-4503[R]. Reston: AIAA, 2018.
18 JACOBS M G, MERRITT S P. High power (200kWe) solar electric propulsion upper stage for in-space transport[C]∥ AIAA Propulsion and Energy Forum. Reston: AIAA, 2018.
19 CHAVERS D G, CHANG-DíAZ F R. Momentum flux measuring instrument for neutral and charged particle flows[J]. Review of Scientific Instruments200273(10): 3500-3507.
20 GLOVER T W, CHANG-DíAZ F R, ILIN A. Projected lunar cargo capabilities of high-power VASIMRTM propulsion[C]∥ 30th International Electric Propulsion Conference, 2007.
21 孙青林, 杨雄, 程谋森. 可变比冲磁等离子体推力器搭建及点火验证[C]∥ 第十六届中国电推进技术学术研讨会, 2020.
  SUN Q L, YANG X, CHENG M S. Construction and experimental study on Variable Specific Impulse Magneto-plasma Rocket[C]∥ 16th China Electric Propulsion Conference (CEPC 2020), 2020 (in Chinese).
22 乔宽, 张清河, 杨雄, 等, 磁约束等离子体参数测量实验研究[C]∥ 第十七届中国电推进技术学术研讨会, 2021.
  QIAO K, ZHANG Q H, YANG X, et al. Experimental study on magnetic confinement plasma parameter measurement[C]∥ 17th China Electric Propulsion Conference (CEPC 2021), 2021 (in Chinese).
23 QIAO K, YANG X, CHENG M S. Experimental study on magnetic confinement plasma parameter measurement of variable ratio magneto plasma rocket[C]∥ First Helicon Plasma Physics and Applications Workshop, 2021.
24 杨振宇, 曹亚文, 范威, 等. 磁等离子体发动机中离子回旋共振天线参数优化[J]. 推进技术202243(4): 422-431.
  YANG Z Y, CAO Y W, FAN W, et al. Parameter optimization of ion cyclotron resonance antenna in magnetoplasma rocket engine[J]. Journal of Propulsion Technology202243(4): 422-431 (in Chinese).
25 孙斌, 赵杨, 魏建国, 等. 高功率螺旋波等离子体诊断试验研究[J]. 推进技术201940(3): 707-713.
  SUN B, ZHAO Y, WEI J G, et al. Plasma diagnostics of a high power Helicon source[J]. Journal of Propulsion Technology201940(3): 707-713 (in Chinese).
26 韩先伟, 魏建国, 孙斌, 等. 大功率磁等离子体发动机研究进展[C]∥ 第十八届全国等离子体科学技术会议, 2017.
  HAN X W, WEI J G, SUN B, et al. Research progress in high-power Magnetoplasma Rocket Engine[C]∥18th National Conference on Plasma Science and Technology, 2017 (in Chinese).
27 韩先伟,魏建国,邓永锋, 等. 磁等离子体发动机研究进展[C]∥ 第十二届中国电推进技术学术研讨会, 2016.
  HAN X W, WEI J G, DENG Y F, et al. Research progress of the high thrust magneto-plasma engine[C]∥12th China Electric Propulsion Conference (CEPC 2016), 2016 (in Chinese).
28 魏建国,孙斌,方吉汉, 等. 磁等离子体发动机磁场仿真计算[C]∥ 第十二届中国电推进技术学术研讨会, 2016.
  WEI J G, SUN B, FANG J H, et al. Numerical simulation on the magnetic field of the high thrust magneto-plasma engine[C]∥ 12th China Electric Propulsion Conference (CEPC 2016), 2016 (in Chinese).
29 张潞鹏. 大功率等离子体推进器的推力比冲测试研究[D]. 合肥:中国科学技术大学, 2022.
  ZHANG L P. Study on thrust and specific impulse test of high power plasma thruster[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese).
30 中国科学院合肥物质科学研究院等离子体物理研究所. 等离子体所承担的中科院重点部署项目子课题顺利通过现场测试验收[EB/OL]. (2022-01-25) [2023-05-07]. .
31 CHANG-DíAZ F R, SQUIRE J, BERING E, et al. The VASIMR engine: Project status and recent accomplishments[C]∥ Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
32 BERING E, BRUKARDT M, CHAN F, et al. Experimental studies of the exhaust plasma of the VASIMR engine[C]∥ Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
33 BERING E, BRUKARDT M S, RODRIGUEZ W A, et al. Ion dynamics and ICRH heating in the exhaust plasma of the VASIMR engine[C]∥ 53rd International Astronautical Congress, 2002.
34 知族科普. 核聚变火箭:能否实现星际旅行的跨越式发展? [EB/OL]. (2023-07-18) [2024-01-24]. .
35 BREIZMAN B N, AREFIEV A V. Single-pass ion cyclotron resonance absorption[J]. Physics of Plasmas20018(3): 907-915.
36 ILIN A, CHANG-DíAZ F R, SQUIRE J, et al. Plasma heating simulation in the VASIMR system[C]∥ Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
37 BERING E, BRUKARDT M, CHANG-DíAZ F R, et al. Ion acceleration by single pass ion cyclotron heating in the VASIMR engine[C]∥ Proceedings of the 29th International Electric Propulsion Conference, 2005.
38 BERING E, CHANG-DíAZ F R, SQUIRE J P, et al. Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma[J]. Physics of Plasmas201017(4): 043509.
39 BERING E, CHANG-DíAZ F, SQUIRE J, et al. High power ion cyclotron heating in the VASIMR engine[C]∥ Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
40 BERING E A, CHANG-DíAZ F R, SQUIRE J P, et al. Electromagnetic ion cyclotron resonance heating in the VASIMR[J]. Advances in Space Research200842(1): 192-205.
41 SQUIRE J P, OLSEN C S, CHANG-DíAZ F R, et al. VASIMR? VX-200 operation at 200 kWe and plume measurements: Future plans and an ISS EP test platform[C]∥ 32nd International Electric Propulsion Conference, 2011.
42 ANDO A, INUTAKE M, HATANAKA M, et al. Alfvén wave excitation and single-pass ion cyclotron heating in a fast-flowing plasma[J]. Physics of Plasmas200613(5): 057103.
43 GERWIN R A, MARKLIN G J, SGRO A G, et al. Characterization of plasma flow through magnetic nozzles: ADA221044[R]. Los Alamos: Los Alamos National Laboratory, 1990.
44 AREFIEV A V, BREIZMAN B N. Magnetohydrodynamic scenario of plasma detachment in a magnetic nozzle[J]. Physics of Plasmas200512(4): 043504.
45 BREIZMAN B N, TUSHENTSOV M R, AREFIEV A V. Magnetic nozzle and plasma detachment model for a steady-state flow[J]. Physics of Plasmas200815(5): 057103.
46 CARTER M D, CHANG-DíAZ F R, ILIN A V, et al. Radio frequency plasma applications for space propulsion[C]∥ International Conference of Electromagnetics in Advanced Space Applications, 1999.
47 TERASAKA K, YOSHIMURA S, OGIWARA K, et al. Experimental studies on ion acceleration and stream line detachment in a diverging magnetic field[J]. Physics of Plasmas201017(7): 072106.
48 HOOPER E B. Plasma detachment from a magnetic nozzle[J]. Journal of Propulsion and Power19939(5): 757-763.
49 AHEDO E, MERINO M. On plasma detachment in propulsive magnetic nozzles[J]. Physics of Plasmas201118(5): 053504.
50 OLSEN C S, BALLENGER M G, CARTER M D, et al. Investigation of plasma detachment from a magnetic nozzle in the plume of the VX-200 magnetoplasma thruster[J]. IEEE Transactions on Plasma Science201543(1): 252-268.
51 ILIN A, CHAN F, SQUIRE J, et al. Simulation of plasma detachment in VASIMR[C]∥ Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
52 YANG X, HANG G R, CHENG M S, et al. Performance evaluation of a 40-mN Hall thruster using laser-induced flourescence with comprehensive error analysis[J]. IEEE Transactions on Plasma Science201947(10): 4691-4699.
53 杨雄, 程谋森, 王墨戈. 基于双向偏振态激光诱导荧光方法的离子速度分布函数测量[J]. 光谱学与光谱分析201737(8): 2346-2351.
  YANG X, CHENG M S, WANG M G. Ion velocity distribution function measurement based on the method of bidirectional polarized laser induced fluorescence[J]. Spectroscopy and Spectral Analysis201737(8): 2346-2351 (in Chinese).
54 段兴跃. 霍尔推力器中等离子体与通道壁相互作用的机理研究[D]. 长沙: 国防科技大学, 2020: 10.
  DUAN X Y. Investigation on the interaction mechanism between the plasma and the channel wall in the Hall thusters[D].Changsha: National University of Defense Technology, 2020: 10 (in Chinese).
55 QIAO K A, SUN Q L, YANG X, et al. Study on the optical emission spectrum diagnosing of the low-temperature plasma using a collisional-radiative model based on the detailed-term-accounting approximation[J]. Journal of Physics: Conference Series20211786(1): 012009.
56 STEPHAN U, STEINKE O, USHAKOV A, et al. Design and analysis of first mirror plasma cleaning electrical circuit for Edge Thomson scattering ITER diagnostics[J]. Fusion Engineering and Design2022177: 113079.
57 XU M M, ZHANG Q F, XIE J L. Design of Thomson scattering diagnostic system on linear magnetized plasma device[J]. Plasma Science and Technology202224(6): 064008.
58 PETRO A. VASIMR plasma rocket technology[R]. Houston: NASA Advanced Space Propulsion Laboratory, 2002.
59 NASA. Nonreimbursable space act agreement between Ad Astra Rocket Company and the National Aeronautics and Space Administration for demonstration of the Variable Specific Impulse Magnetoplasma Rocket (VASIMRTM) aboard the international space station [R]. Washington, D.C.: NASA, 2008.
60 韩先伟, 魏建国, 邓永锋, 等. 磁等离子体发动机研究进展[C]∥ 第十一届中国电推进技术学术研讨会, 2015.
  HAN X W, WEI J G, DENG Y F, et al. Research progress of magnetic plasma engine[C]∥ 11th China Electric Propulsion Conference (CEPC 2015), 2015 (in Chinese).
61 CHANG-DíAZ F R, GIAMBUSSO M, CORRIGAN A M H, et al. Recent progress on the VASIMR? engine[C]∥ 37th International Electric Propulsion Conference, 2022.
62 Ad Astra Rocket Company. Ad Astra Rocket Company’s VASIMR? Near Earth Asteroid (NEA) deflection mission[R]. Webster:Ad Astra Rocket Company,2013.
63 张天平, 张伟文, 吴先明, 等. 空间电推进的技术发展及应用[C]∥ 2014中国卫星应用大会, 2014.
  ZHANG T P, ZHANG W W, WU X M, et al. Technological development and application of space electric propulsion [C]∥ China Satellite Application Conference in 2014, 2014 (in Chinese).
文章导航

/