电子电气工程与控制

机械天线阵列系统的伺服优化及调制方式

  • 郝振洋 ,
  • 秦岭 ,
  • 曹鑫 ,
  • 张绮瑶 ,
  • 周强
展开
  • 1.南京航空航天大学 自动化学院,南京 210016
    2.国防科技大学 第六十三研究所,南京 210007

收稿日期: 2023-03-14

  修回日期: 2023-03-31

  录用日期: 2023-04-23

  网络出版日期: 2023-05-12

基金资助

国家自然科学基金(52077100);航空科学基金(201958052001)

Optimal servo system and modulation method of mechanical antenna array

  • Zhenyang HAO ,
  • Ling QIN ,
  • Xin CAO ,
  • Qiyao ZHANG ,
  • Qiang ZHOU
Expand
  • 1.College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.The Sixty?third Research Institute,National University of Defense Technology,Nanjing 210007,China

Received date: 2023-03-14

  Revised date: 2023-03-31

  Accepted date: 2023-04-23

  Online published: 2023-05-12

Supported by

National Natural Science Foundation of China(52077100);Aeronautical Science Foundation of China(201958052001)

摘要

旋转永磁式机械天线(RMBMA)作为一种全新的超低频电磁通信模式,可以显著降发信机的尺寸和功耗,但其存在远距离辐射场强弱、通讯波特率和准确率低等问题,不利于实际应用。为此提出了基于永磁同步电机直驱式的旋转永磁式机械天线阵列系统,并针对机械天线信号调制的瞬态大电流和转速频繁切换的工况,提出了基于无差拍电流预测模型的机械天线位置差协调控制策略,提高了系统的伺服性能且满足应用需求。对所提位置差协调控制参数进行设计,理论验证系统的伺服性、稳定性及鲁棒性,实现机械天线调制信号的高传输速率与低误码率。最后,搭建了机械天线阵列系统的实验测试平台,并对其近区磁场场强分布和驱动系统的伺服性能进行了实验测试,系统的近区场强相比于单磁源实现了翻倍,有效解决了场强弱的问题。电机伺服系统转速无超调且调节时间≤0.25 s,达到了伺服控制指标。

本文引用格式

郝振洋 , 秦岭 , 曹鑫 , 张绮瑶 , 周强 . 机械天线阵列系统的伺服优化及调制方式[J]. 航空学报, 2024 , 45(3) : 328692 -328692 . DOI: 10.7527/S1000-6893.2023.28692

Abstract

As a new communication pattern, the Rotating Magnet-Based Mechanical Antenna (RMBMA) can significantly reduce both the size and the power consumption of the super-low frequency electromagnetic transmitter. However, it has the problems of weak radiated magnetic field intensity and low communication baud, limiting its practical applications. To solve these problems, this paper proposes a RMBMA array system based on the direct drive of permanent magnet synchronous motor. For the working conditions of high transient current and frequent speed switching of mechanical antenna signal modulation, a position difference coordinated-control strategy based on the deadbeat current prediction model is proposed, which improves the servo performance of the system and meets the application requirements. The proposed position difference coordinated-control parameters are designed, and the servo performance, stability and robustness of the system are theoretically verified. The high transmission rate and low bit error rate of the modulation signal of the mechanical antenna are realized. Finally, an experimental test platform for the mechanical antenna array system is built, and the distribution of the magnetic field strength in the near area and the servo performance of the drive system are tested experimentally. Compared with the single magnetic source, the magnetic field intensity in the near area of the system is doubled, showing that the problem of weak radiated magnetic field intensity can be effectively solved. The speed of the motor servo system has no overshoot and the adjustment time is ≤0.25 s, reaching the servo control index.

参考文献

1 丁宏. DARPA机械天线项目或掀起军事通信革命[J]. 现代军事2017(4): 71-73.
  DING H. DARPA mechanical antenna project or military communication revolution[J]. Conmilit2017(4): 71-73 (in Chinese).
2 崔勇, 吴明, 宋晓, 等. 小型低频发射天线的研究进展[J]. 物理学报202069(20): 171-183.
  CUI Y, WU M, SONG X, et al. Research progress of small low-frequency transmitting antenna[J]. Acta Physica Sinica202069(20): 171-183 (in Chinese).
3 施伟, 周强, 俞石云. 旋转永磁体机械天线的辐射效率与近区磁场[J]. 华中科技大学学报(自然科学版)202351(9): 33-39.
  SHI W, ZHOU Q, YU S Y. Radiation efficiency and magnetic field for spinning magnet as mechanical antenna[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition)202351(9): 33-39 (in Chinese).
4 周强, 姚富强, 施伟, 等. 机械式低频天线机理及其关键技术研究[J]. 中国科学: 技术科学202050(1): 69-84.
  ZHOU Q, YAO F Q, SHI W, et al. Research on mechanism and key technology of mechanical antenna for a low-frequency transmission[J]. Scientia Sinica (Technologica)202050(1): 69-84 (in Chinese).
5 周强, 施伟, 刘斌, 等. 旋转永磁式机械天线的研究与实现[J]. 国防科技大学学报202042(3): 128-136.
  ZHOU Q, SHI W, LIU B, et al. Research and practice of the mechanical antennas based on rotating permanent magnet[J]. Journal of National University of Defense Technology202042(3): 128-136 (in Chinese).
6 BURCH H C, GARRAUD A, MITCHELL M F, et al. Experimental generation of ELF radio signals using a rotating magnet[J]. IEEE Transactions on Antennas and Propagation201866(11): 6265-6272.
7 STRACHEN N, BOOSKE J, BEHDAD N. Mechanical super-low frequency (SLF) transmitter using electrically-modulated reluctance[C]∥ 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018: 67-68.
8 TASNIM K, ISLAM M N, HAQUE M, et al. A novel speed controller of ultra-high-speed PMSM for A-mechanically-based-antenna (AMEBA)[C]∥ 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), 2022: 137-144.
9 TAREK M T BIN, DHARMASENA S, MADANAYAKE A, et al. Power-efficient data modulation for all-mechanical ULF/VLF transmitters[C]∥ 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), 2018: 759-762.
10 GLICKSTEIN J S, LIANG J F, CHOI S, et al. Power-efficient ELF wireless communications using electro-mechanical transmitters[J]. IEEE Access20198: 2455-2471.
11 王龙飞, 李丽华, 修梦雷, 等. 机械天线通信技术研究现状[J]. 电讯技术202363(4): 605-610.
  WANG L F, LI L H, XIU M L, et al. Research status of mechanical antenna communication technology[J]. Telecommunication Engineering202363(4): 605-610 (in Chinese).
12 ZHENG H, LI X, HAO Z Y, et al. Design of a high-speed permanent magnet motor with a spinning magnet source for mechanical antenna[C]∥ 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia). Piscataway: IEEE Press, 2021: 154-159.
13 陈威振. 永磁同步电机在舵机位置伺服系统中的性能研究[D]. 南京: 南京航空航天大学, 2017: 8-20.
  CHEN W Z. The performance research on permanent magnet synchronous motor in EMA position servo system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 8-20 (in Chinese).
14 XIAOYU W, ZHANG W H, ZHOU X, et al. Research on permanent magnet-type super-low-frequency mechanical antenna communication[J]. International Journal of Antennas and Propagation2021:1-16.
15 FAWOLE O C, TABIB-AZAR M. An electromechanically modulated permanent magnet antenna for wireless communication in harsh electromagnetic environments[J]. IEEE Transactions on Antennas and Propagation201765(12): 6927-6936.
16 张继鹏, 苏锦智, 廖雪松, 等. 永磁同步电机的无差拍电流预测控制[J]. 微电机201750(6): 56-59.
  ZHANG J P, SU J Z, LIAO X S, et al. A deadbeat current predictive control for permanent magnet synchronous motor[J]. Micromotors201750(6): 56-59 (in Chinese).
17 胡寿松. 自动控制原理[M]. 4版. 北京: 科学出版社, 2001: 79-98, 195-246, 339-351.
  HU S S. Principle of automatic control[M]. 4th ed. Beijing: Science Press, 2001: 79-98, 195-246, 339-351 (in Chinese).
18 YIN K X, GAO L, CHEN R P, et al. Adaptive deadbeat predictive current control for PMSM with feed forward method[J]. IEEE Access20219: 101300.
19 王庚. 永磁交流伺服系统电流预测控制及其电流静差消除算法[D]. 哈尔滨: 哈尔滨工业大学, 2014.
  WANG G. Predictive current control and current error elimination for permanent magnet AC servo system[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese).
20 HARNEFORS L, PIETILAINEN K, GERTMAR L. Torque-maximizing field-weakening control: design, analysis, and parameter selection[J]. IEEE Transactions on Industrial Electronics200148(1): 161-168.
21 刘艳, 李银伢, 戚国庆. 微型天线伺服系统保主导极点配置控制器设计[J]. 电光与控制201118(6): 79-84.
  LIU Y, LI Y Y, QI G Q. Design of controllers with guaranteed dominant pole placement for miniaturized antenna servo system[J]. Electronics Optics & Control201118(6): 79-84 (in Chinese).
文章导航

/