主流速度对微细管式预冷器结霜和抑霜特性的影响
收稿日期: 2023-03-02
修回日期: 2023-03-23
录用日期: 2023-04-17
网络出版日期: 2023-05-12
基金资助
民机专项(MJ-2016-D-35)
Effects of main flow velocity on frosting and defrosting characteristics of microtubule precooler
Received date: 2023-03-02
Revised date: 2023-03-23
Accepted date: 2023-04-17
Online published: 2023-05-12
Supported by
Civil Aircraft Project(MJ-2016-D-35)
基于不同的实验工况,对微细管式预冷器分别开展了结霜和抑霜的地面实验研究,具体的实验工况为:主流的温度和湿度值分别为50 ℃和1.8 g/kg;主流速度分别为10、20、30 m/s。在不同主流速度的抑霜实验中,向主流中喷射的无水甲醇-水的质量比均为1.0。结霜和抑霜的地面实验结果均表明,主流速度对微细管式预冷器的结霜和抑霜特性均有显著的影响,且增大主流速度,能够明显地减少霜层在预冷器微细管束壁面外侧的凝结和累积量。在抑霜实验中,由于向主流中喷射了质量比为1.0的无水甲醇,预冷器微细管束的壁面温度显著增大,且抑霜效果得到明显改善,自由来流的压力损失系数亦明显下降,且预冷器的换热率显著增大。此外,随着主流速度逐渐增大,自由来流的压力损失系数急剧增大,而凝结在预冷器微细管束壁面外侧的霜层覆盖面积明显减小,这表明增大主流速度有利于抑制霜层在预冷器微细管束外侧壁面上的凝结和累积。
韦宏 , 王鹏 , 董威 , 郭晓峰 , 李治达 , 杨学森 , 唐中富 , 付超 . 主流速度对微细管式预冷器结霜和抑霜特性的影响[J]. 航空学报, 2024 , 45(2) : 128639 -128639 . DOI: 10.7527/S1000-6893.2023.28639
Based on different experimental conditions, the ground experimental studies on the frosting and defrosting of the microtubule precooler have been carried out. The specific experimental conditions are as follows: the temperature and humidity value of the mainstream are 50 ℃ and 1.8 g/kg, respectively, and the flow velocity of the mainstream is 10, 20, and 30 m/s, respectively. For the defrosting experiments at different main flow velocities, the mass ratio of the anhydrous methanol-to-water spraying into the main flow is 1.0. The results of the frosting and defrosting ground experiments show that the main flow velocity has significant effects on the frosting and defrosting characteristics of the microtubule precooler. In addition to increasing the main flow velocity, it can significantly reduce the condensation and accumulation of the frost layer on the outside wall surface of the microtubule bundle of the precooler. In the defrosting experiments, due to the spraying of anhydrous methanol with a mass ratio of 1.0 into the main flow, the wall surface temperature of the microtubule bundle of the precooler can be significantly increased, and the defrosting effect can also be clearly improved. As a result, the pressure loss coefficient of the freestream deceases distinctly and the heat transfer rate of the precooler appreciably increases. In addition, with the increase of the main flow velocity, the pressure loss coefficient of the freestream increases sharply, while the covering area of the frost layer on the outside wall surface of the microtubule bank of the precooler clearly decreases, which indicates that increasing the main flow velocity is beneficial to the suppression of the condensation and accumulation of frost layers on the outside wall surface of the precooler microtubule bank.
1 | TANATUSGU N, SATO T, NARUO Y, et al. Development study on ATREX engine[J]. Acta Astronautica, 1997, 40(2-8): 165-170. |
2 | SATO T, TANATSUGU N, KOBAYASHI H, et al. Countermeasures against the icing problem on the ATREX precooler[J]. Acta Astronautica, 2004, 54(9): 671-686. |
3 | VARVILL R. Heat exchanger development at reaction engines Ltd.[J]. Acta Astronautica, 2010, 66(9-10): 1468-1474. |
4 | DAI J, ZUO Q R. Key technologies for thermodynamic cycle of precooled engines: A review[J]. Acta Astronautica, 2020, 177: 299-312. |
5 | WANG Z G, WANG Y, ZHANG J Q, et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer[J]. Aerospace Science and Technology, 2014, 39: 31-39. |
6 | MENG B, WAN M, ZHAO R, et al. Micromanufacturing technologies of compact heat exchangers for hypersonic precooled airbreathing propulsion: A review[J]. Chinese Journal of Aeronautics, 2021, 34(2): 79-103. |
7 | MURRAY J J, GUHA A, BOND A. Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers[J]. Acta Astronautica, 1997, 41(11): 723-729. |
8 | FUKIBA K, INOUE S, OHKUBO H, et al. New defrosting method using jet impingement for precooled turbojet engines[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3): 533-542. |
9 | KIM K, KIM M H, KIM D R, et al. Thermal performance of microchannel heat exchangers according to the design parameters under the frosting conditions[J]. International Journal of Heat and Mass Transfer, 2014, 71: 626-632. |
10 | SONOBE N, FUKIBA K, SATO S, et al. Method for defrosting heat exchangers using an air-particle jet[J]. International Journal of Refrigeration, 2015, 60: 261-269. |
11 | LIU X Q, YU J L, YAN G. A numerical study on the air-side heat transfer of perforated finned-tube heat exchangers with large fin pitches[J]. International Journal of Heat and Mass Transfer, 2016, 100: 199-207. |
12 | 姚李超, 付超, 张俊强, 等. 非定常来流压力下基于DMD方法的预冷器换热特性[J]. 航空动力学报, 2020, 35(10): 2064-2077. |
YAO L C, FU C, ZHANG J Q, et al. Heat transfer performance of pre-cooler under unsteady inflow pressure condition using dynamic mode decomposition method[J]. Journal of Aerospace Power, 2020, 35(10): 2064-2077 (in Chinese). | |
13 | WANG F, LIANG C H, ZHANG Y F, et al. Defrosting performance of superhydrophobic fin-tube heat exchanger[J]. Applied Thermal Engineering, 2017, 113: 229-237. |
14 | WANG F, LIANG C H, ZHANG X S, et al. Effects of surface wettability and defrosting conditions on defrosting performance of fin-tube heat exchanger[J]. Experimental Thermal and Fluid Science, 2018, 93: 334-343. |
15 | WANG F, LIANG C H, YANG M T, et al. Effects of surface characteristic on frosting and defrosting behaviors of fin-tube heat exchangers[J]. Applied Thermal Engineering, 2015, 75: 1126-1132. |
16 | PU L, LIU R, HUANG H, et al. Experimental study of cyclic frosting and defrosting on microchannel heat exchangers with different coatings[J]. Energy and Buildings, 2020, 226: 110382. |
17 | KIM K, LEE K S. Frosting and defrosting characteristics of surface-treated louvered-fin heat exchangers: Effects of fin pitch and experimental conditions[J]. International Journal of Heat and Mass Transfer, 2013, 60: 505-511. |
18 | JHEE S, LEE K S, KIM W S. Effect of surface treatments on the frosting/defrosting behavior of a fin-tube heat exchanger[J]. International Journal of Refrigeration, 2002, 25(8): 1047-1053. |
19 | XU B, HAN Q, CHEN J P, et al. Experimental investigation of frost and defrost performance of microchannel heat exchangers for heat pump systems[J]. Applied Energy, 2013, 103: 180-188. |
20 | XI Z L, YAO R M, LI J B, et al. Experimental studies on hot gas bypass defrosting control strategies for air source heat pumps[J]. Journal of Building Engineering, 2021, 43: 103165. |
21 | QU M L, XIA L, DENG S M, et al. An experimental investigation on reverse-cycle defrosting performance for an air source heat pump using an electronic expansion valve[J]. Applied Energy, 2012, 97: 327-333. |
22 | KIM J, CHOI H J, KIM K C. A combined Dual Hot-Gas Bypass Defrosting method with accumulator heater for an air-to-air heat pump in cold region[J]. Applied Energy, 2015, 147: 344-352. |
23 | 韦宏, 杨学森, 李治达, 等. 无水甲醇质量比对紧凑型预冷器的结霜和抑霜性能的影响[J]. 航空动力学报, 2023, 38(3): 596-606. |
WEI H, YANG X S, LI Z D, et al. Effects of mass ratio of anhydrous methanol on frosting and defrosting performance of compact precooler[J]. Journal of Aerospace Power, 2023, 38(3): 596-606 (in Chinese). | |
24 | HARADA K, TANATSUGU N, SATO T. Development study of a precooler for the air-turboramjet expander-cycle engine[J]. Journal of Propulsion and Power, 2001, 17(6): 1233-1238. |
25 | HARADA K. Study on frosting formation in heat exchanger using cryogenic coolant[D]. Tokyo: The University of Tokyo, 1999. |
26 | SONOBE N, FUKIBA K, SATO S, et al. Method for defrosting heat exchangers using an air-particle jet[J]. International Journal of Refrigeration, 2015, 60: 261-269. |
/
〈 |
|
〉 |