分布式粗糙元对高超声速边界层不稳定性的影响试验
收稿日期: 2023-02-28
修回日期: 2023-03-26
录用日期: 2023-04-28
网络出版日期: 2023-05-12
Experiment of influence of distributed roughness elements on hypersonic boundary layer instability
Received date: 2023-02-28
Revised date: 2023-03-26
Accepted date: 2023-04-28
Online published: 2023-05-12
高超声速边界层转捩是空气动力学亟须研究的关键问题之一。飞行器表面的热防护系统会由于高温烧蚀产生宏观分布式粗糙元形貌,但是目前该宏观烧蚀形貌对高超声速边界层内不稳定波演化机制的影响尚不明晰。基于华中科技大学∅0.5 m马赫数6 Ludwieg管风洞,利用高频压力传感器(PCB)和红外热像仪等测量手段,重点研究了分布式粗糙元布置位置和宽度对零攻角下7°半张角尖锥模型高超声速边界层不稳定波演化特征和转捩位置的影响。试验结果表明,将分布式粗糙元布置于同步点之前会促进第二模态不稳定波的演化,且越靠近前缘位置粗糙元宽度因素对下游不稳定波演化影响越小;但随其分布位置向下游移动,促进转捩作用减弱,对不稳定波的非线性交互抑制效果更为明显,转捩位置随之后移。
李学良 , 李创创 , 苏伟 , 吴杰 . 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024 , 45(2) : 128627 -128627 . DOI: 10.7527/S1000-6893.2023.28627
Hypersonic boundary layer transition is one of the key problems in aerodynamics. Macroscopic distributed roughness elements pattern will be produced due to surface high temperature ablation of thermal protection system on the flight vehicle, but its influence on the evolution mechanism of instability waves in the hypersonic boundary layer is not clear now. Based on the ∅0.5 m Mach number 6 Ludwieg tube wind tunnel of Huazhong University of Science and Technology, this paper explores the influence of location and width of distributed roughness elements on the evolution characteristics and transition position of hypersonic boundary layer instability waves of a 7° half-angle sharp cone model at zero angle of attack. PCB sensors and infrared thermography are used. The experimental results show that placing the distributed roughness elements in front of the synchronization point will promote the evolution of the second mode unstable wave; the closer the roughness element is to the leading edge, the smaller the influence of its width on the evolution of downstream instability waves. However, as its distribution position moves downstream, its effect on promoting transition is weakened, and its effect on inhibition of the nonlinear interaction of instability waves is more obvious, then the transition position moves backward.
1 | 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311-337. |
CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition: What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311-337 (in Chinese). | |
2 | 周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报, 2017, 35(2): 151-155. |
ZHOU H, ZHANG H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2): 151-155 (in Chinese). | |
3 | 杨武兵, 沈清, 朱德华, 等. 高超声速边界层转捩研究现状与趋势[J]. 空气动力学学报, 2018, 36(2): 183-195. |
YANG W B, SHEN Q, ZHU D H, et al. Tendency and current status of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2018, 36(2): 183-195 (in Chinese). | |
4 | 陈坚强, 袁先旭, 涂国华, 等. 高超声速边界层转捩的几点认识[J]. 中国科学: 物理学 力学 天文学, 2019, 49(11): 125-138. |
CHEN J Q, YUAN X X, TU G H, et al. Recent progresses on hypersonic boundary-layer transition[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(11): 125-138 (in Chinese). | |
5 | 李强, 万兵兵, 杨凯, 等. 高超声速尖锥边界层压力脉动和热流脉动特性试验[J]. 航空学报, 2022, 43(2): 124956. |
LI Q, WAN B B, YANG K, et al. Experimental research on characteristics of pressure and heat flux fluctuation in hypersonic cone boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 124956 (in Chinese). | |
6 | 刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报, 2018, 36(2): 196-212. |
LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 196-212 (in Chinese). | |
7 | 罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357-372. |
LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357-372 (in Chinese). | |
8 | 刘强, 涂国华, 罗振兵, 等. 延迟高超声速边界层转捩技术研究进展[J]. 航空学报, 2022, 43(7): 025357. |
LIU Q, TU G H, LUO Z B, et al. Progress in hypersonic boundary layer transition delay control[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025357 (in Chinese). | |
9 | PELTIER S J, HUMBLE R A, BOWERSOX R D W. Crosshatch roughness distortions on a hypersonic turbulent boundary layer[J]. Physics of Fluids, 2016, 28(4): 045105. |
10 | KOCHER B D, KRETH P A, SCHMISSEUR J D, et al. Characterizing streamwise development of surface roughness effects on a supersonic boundary layer[J]. AIAA Journal, 2022, 60(9): 5136-5149. |
11 | EKOTO I W, BOWERSOX R D W, BEUTNER T, et al. Supersonic boundary layers with periodic surface roughness[J]. AIAA Journal, 2008, 46(2): 486-497. |
12 | SCHNEIDER S P. Effects of roughness on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2012, 45(2): 193-209. |
13 | TIRTEY S, CHAZOT O, WALPOT L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011, 50(2): 407-418. |
14 | WHEATON B M, SCHNEIDER S P. Hypersonic boundary-layer instabilities due to near-critical roughness[J]. Journal of Spacecraft and Rockets, 2014, 51(1): 327-342. |
15 | SUBBAREDDY P, BARTKOWICZ M, CANDLER G. Direct numerical simulation of high-speed transition due to an isolated roughness element[J]. Journal of Fluid Mechanics, 2014, 748(3): 848-878. |
16 | 周云龙, 刘伟, 吴栋. 不同形状粗糙元在诱导超声速边界层转捩中的应用[J].国防科技大学学报, 2018, 40(6): 17-22. |
ZHOU Y L, LIU W, WU D. Application of different roughness shapes in inducing supersonic boundary layer transition[J]. Journal of National University of Defense Technology, 2018, 40(6): 17-22 (in Chinese). | |
17 | 董明. 高超声速边界层中由粗糙元引起强制转捩的机理[J]. 气体物理, 2016, 1(5): 25-38. |
DONG M. Mechanism of roughness-induced transition in hypersonic boundary layers[J]. Physics of Gases, 2016, 1(5): 25-38 (in Chinese). | |
18 | 段志伟, 肖志祥. 粗糙元诱导的高超声速边界层转捩[J]. 航空学报, 2016, 37(8): 2454-2463. |
DUAN Z W, XIAO Z X. Roughness element induced hypersonic boundary layer transition[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2454-2463 (in Chinese). | |
19 | MUPPIDI S, MAHESH K. Direct numerical simulations of roughness-induced transition in supersonic boundary layers[J]. Journal of Fluid Mechanics, 2012, 693: 28-56. |
20 | CHOUDHARI M, LI F, PAREDES P. Effect of distributed patch of smooth roughness elements on transition in a high-speed boundary layer[C]∥Proceedings of 2018 Fluid Dynamics Conference. Reston: AIAA, 2018: 3532. |
21 | KHOTYANOVSKY D V, KIRILOVSKIY S V, POPLAVSKAYA T V, et al. Numerical study of the evolution of disturbances generated by roughness elements in a supersonic boundary layer on a blunted cone[J]. Journal of Applied Mechanics and Technical Physics, 2019, 60(3): 438-450. |
22 | CHOU A, PAREDES P, KEGERISE M A, et al. Transition induced by an egg-crate roughness on a flat plate in supersonic flow[J]. Journal of Fluid Mechanics, 2022, 948: A27. |
23 | 董明. 边界层转捩预测中的局部散射理论[J]. 空气动力学学报, 2020, 38(2): 286-298. |
DONG M. Local scattering theory for transition prediction in boundary-layer flows[J]. Acta Aerodynamica Sinica, 2020, 38(2): 286-298 (in Chinese). | |
24 | DUAN L, WANG X W, ZHONG X L. A high-order cut-cell method for numerical simulation of hypersonic boundary-layer instability with surface roughness[J]. Journal of Computational Physics, 2010, 229(19): 7207-7237. |
25 | FONG K D, WANG X W, ZHONG X L. Finite roughness effect on modal growth of a hypersonic boundary layer[C]∥Proceedings of 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
26 | DUAN L, WANG X W, ZHONG X L. Stabilization of a Mach 5.92 boundary layer by two-dimensional finite-height roughness[J]. AIAA Journal, 2013, 51(1): 266-270. |
27 | FONG K D, WANG X W, ZHONG X L. Numerical simulation of roughness effect on the stability of a hypersonic boundary layer[J]. Computers & Fluids, 2014, 96: 350-367. |
28 | MORTENSEN C, ZHONG X L. Numerical simulation of hypersonic boundary-layer instability in a real gas with two-dimensional surface roughness[C]∥Proceedings of the 45th AIAA Fluid Dynamics Conference. Reston: AIAA, 2015. |
29 | FONG K D, WANG X W, ZHONG X L. Parametric study on stabilization of hypersonic boundary layer waves using 2-D surface roughness[C]∥Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
30 | FONG K D, WANG X W, HUANG Y, et al. Second mode suppression in hypersonic boundary layer by roughness: Design and experiments[J]. AIAA Journal, 2015,53(10): 3138-3144. |
31 | FONG K D, ZHONG X L. DNS and PSE study on the stabilization effect of hypersonic boundary layer waves using 2-D surface roughness[C]∥Proceedings of the 46th AIAA Fluid Dynamics Conference. Reston: AIAA, 2016. |
32 | HALEY C L, ZHONG X L. Direct numerical simulation of hypersonic flow over a blunt cone with axisymmetric isolated roughness[C]∥Proceedings of the 47th AIAA Fluid Dynamics Conference. Reston: AIAA, 2017. |
33 | FONG K D. A numerical study of 2-D surface roughness effects on the growth of wave modes in hypersonic boundary layers[M]. Los Angeles: University of California, 2017. |
34 | HALEY C L, CASPER K M, ZHONG X L. Joint numerical and experimental investigation of roughness effect on hypersonic 2nd mode instability and transition[C]∥Proceedings of AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
35 | KNISELY C P, ZHONG X L. Sound radiation by supersonic unstable modes in hypersonic blunt cone boundary layers. Ⅱ. Direct numerical simulation[J]. Physics of Fluids, 2019, 31(2): 024104. |
36 | KNISELY C P, ZHONG X L. Sound radiation by supersonic unstable modes in hypersonic blunt cone boundary layers. I. Linear stability theory[J]. Physics of Fluids, 2019, 31(2): 024103. |
37 | CHRISTOPHER H. Attenuation of hypersonic second mode instability with discrete surface roughness on straight blunt cones[D]. Los Angeles: University of California, 2021: 58-164. |
38 | 黄冉冉, 张成键, 李创创, 等. 华中科技大学Φ 0.5 m马赫6 Ludwieg管风洞设计与流场初步校测[J]. 空气动力学学报, 2023, 41(1): 39-48, 85. |
HUANG R R, ZHANG C J, LI C C, et al. Design and preliminary freestream calibration of HUST Φ 0.5 m Mach 6 Ludwieg tube wind tunnel[J]. Acta Aerodynamica Sinica, 2023, 41(1): 39-48, 85 (in Chinese). | |
39 | 王猛, 李玉军, 赵荣奂, 等. 基于在线加热涂层的宽速域转捩探测技术[J]. 航空学报, 2022, 43(11): 190-199. |
WANG M, LI Y J, ZHAO R H, et al. Transition detection technique for wide speed range by means of on-line heating coating[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(11): 190-199. | |
40 | 刘姝怡, 陈坚强, 袁先旭, 等. 6°攻角尖锥高超声速边界层高频不稳定波实验研究[J]. 实验流体力学, 2021, 35(6): 1-7. |
LIU S Y, CHEN J Q, YUAN X X, et al. Experimental study on high frequency unstable waves in hypersonic boundary layer with sharp cone at 6°angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 1-7 (in Chinese). | |
41 | ZHAO J Q, SIMA X H, XIONG Y D, et al. Impact of wavy wall surface on hypersonic boundary-layer instability of sharp cone model[J]. AIAA Journal, 2022, 60(11): 6203-6215. |
42 | BOUNTIN D A, MASLOV A A. Analysis of the development of perturbations in a hypersonic boundary layer behind a wavy surface[J]. Technical Physics Letters, 2017, 43(7): 623-626. |
43 | CHOKANI N. Nonlinear evolution of Mack modes in a hypersonic boundary layer[J]. Physics of Fluids, 2005, 17(1): 014102. |
44 | CRAIG S A, HUMBLE R A, HOFFERTH J W, et al. Nonlinear behaviour of the Mack mode in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2019, 872: 74-99. |
45 | GUI Y T, WANG W Z, ZHAO R, et al. Hypersonic boundary-layer instability characteristics on sharp cone with porous coating[J]. AIAA Journal, 2022, 60(7): 4453-4461. |
46 | 成江逸, 司马学昊, 吴杰. 粗糙元对零攻角尖锥模型高超声速边界层转捩的影响研究[J]. 南京航空航天大学学报, 2022, 54(4): 573-582. |
CHENG J Y, SIMA X H, WU J. Influence of roughness element on hypersonic boundary layer transition of cone model at zero angle of attack[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(4): 573?582 (in Chinese). | |
47 | HUANG R R, CHENG J Y, CHEN J Q, et al. Experimental study of bluntness effects on hypersonic boundary-layer transition over a slender cone using surface mounted pressure sensors[J]. Advances in Aerodynamics, 2022, 4: 1-19. |
48 | 黄冉冉, 司马学昊, 成江逸, 等. 基于Ludwieg 管的高超声速边界层转捩实验[J]. 气体物理, 2021, 6(5): 51-61. |
HUANG R R, SIMA X H, CHENG J Y, et al. Hypersonic boundary-layer transition experiments in Ludwieg tube[J]. Physics of Gases, 2021, 6(5): 51-61 (in Chinese). | |
49 | ZHAO R, WEN C Y, TIAN X D, et al. Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer[J]. International Journal of Heat and Mass Transfer, 2018, 121: 986-998. |
50 | STETSON K F, KIMMEL R L. On hypersonic boundary-layer stability[C]∥Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
51 | MIRó M F, DEHAIRS P, PINNA F, et al. Effect of wall blowing on hypersonic boundary-layer transition[J]. AIAA Journal, 2019, 57(4): 1567-1578. |
/
〈 |
|
〉 |