综述

飞机结构激光冲击强化研究进展与展望

  • 聂祥樊 ,
  • 李阳 ,
  • 王亚洲 ,
  • 万全红 ,
  • 何卫锋
展开
  • 1.空军工程大学 航空动力系统与等离子体技术全国重点实验室,西安 710038
    2.航空工业 成都飞机设计研究所,成都 610091

收稿日期: 2023-02-21

  修回日期: 2023-03-24

  录用日期: 2023-05-06

  网络出版日期: 2023-05-12

基金资助

国防基础科研项目(JCKY2019802B001);国家自然科学基金(92060109)

Research progress and prospect of laser shock peening technology in aircraft structure

  • Xiangfan NIE ,
  • Yang LI ,
  • Yazhou WANG ,
  • Quanhong WAN ,
  • Weifeng HE
Expand
  • 1.National Key Lab of Aerospace Power System and Plasma Technology,Air Force Engineering University,Xi’an 710038,China
    2.AVIC Chengdu Aircraft Design & Research Institute,Chengdu 610091,China

Received date: 2023-02-21

  Revised date: 2023-03-24

  Accepted date: 2023-05-06

  Online published: 2023-05-12

Supported by

National Defense Basic Research Program(JCKY2019802B001);National Natural Science Foundation of China(92060109)

摘要

飞机梁、框、壁板等承力结构广泛采用铝合金、钛合金等轻质合金,且孔、槽、窝、连接等局部区域存在应力集中、工作应力大等问题,容易导致服役过程中在交变载荷作用下发生疲劳裂纹故障,制约飞机结构服役寿命,甚至影响飞行安全。激光冲击强化是一种新型表面塑性强化技术,可在不更换材料和不改变结构尺寸的前提下,通过材料表层内预制残余压应力和改善微观组织,显著提升其疲劳性能,现已在美军F-22、F-35等飞机上实现了工程应用。重点阐述含孔、焊接、含倒角和高承载等典型飞机结构激光冲击强化研究进展及有待解决的问题,分析并总结近年来飞机结构激光冲击强化研究历程与发展特点,从设备、机理、工艺和工程应用等方面进行研究展望。通过系统性研究进展和梳理技术问题,明确未来工程应用所需的理论支撑和关键技术,促进相关创新链、产业链快速发展与协同合作,推动激光冲击强化技术在中国军民用飞机结构抗疲劳制造与延寿修理上的规模化应用。

本文引用格式

聂祥樊 , 李阳 , 王亚洲 , 万全红 , 何卫锋 . 飞机结构激光冲击强化研究进展与展望[J]. 航空学报, 2023 , 44(24) : 28595 -028595 . DOI: 10.7527/S1000-6893.2023.28595

Abstract

Light alloys such as aluminum alloy and titanium alloy are widely used in load-bearing structures such as aircraft beams, frames and panels. Since critical problems such as stress concentration and high working stress exist in the local areas such as holes, grooves, sockets and joints of aircraft, fatigue cracks are easy to occur under alternating load during service, restricting the service life of aircraft structures and even affecting flight safety. As a novel surface plastic-strengthening technology, Laser Shock Peening (LSP) can significantly improve the fatigue performance by imparting compressive residual stress and improving microstructure in the surface layer of the material without changing the material and structure size. Engineering applications of LSP have been realized in the U. S. F-22, F-35 and other aircraft. In this paper, the research progress and unsolved problems in LSP of typical aircraft structures including holes, welding, chamfers and high-bearing regions are deeply discussed. Besides, the research history and development characteristics of LSP of aircraft structures in recent years are analyzed and summarized. Moreover, research prospects are made from the aspects of equipment, mechanism, process and engineering application. By systematically teasing the research progress and technical problems, this paper aims to clarify the theoretical support and key technology required for future engineering application, facilitate the rapid development and collaboration of related innovation and industrial chains, and promote the large-scale application of LSP technology in anti-fatigue manufacturing and life-extension repairing of aircraft structures in China.

参考文献

1 李应红,何卫峰. 激光冲击强化理论与技术[M]. 北京: 科学出版社, 2013.
  LI Y H, HE W F. Laser shock peening theory and technology[M]. Beijing: Science Press, 2013 (in Chinese).
2 彭兆春. 基于疲劳损伤累积理论的结构寿命预测与时变可靠性分析方法研究[D]. 成都: 电子科技大学, 2017.
  PENG Z C. Research on methods for structural life prediction and time-dependent reliability analysis using cumulative fatigue damage theories[D]. Chengdu: University of Electronic Science and Technology of China, 2017 (in Chinese).
3 YANG S, ZENG W, YANG J S. Characterization of shot peening properties and modelling on the fatigue performance of 304 austenitic stainless steel[J]. International Journal of Fatigue2020137: 105621.
4 MARTINS A M, LEAL C A A, CAMPIDELLI A F V, et al. Assessment of the temperature distribution in deep rolling of hardened AISI 4140 steel[J]. Journal of Manufacturing Processes202273: 686-694.
5 PANIN A V, KAZACHENOK M S, DMITRIEV A I, et al. The effect of ultrasonic impact treatment on deformation and fracture of electron beam additive manufactured Ti-6Al-4V under uniaxial tension[J]. Materials Science and Engineering: A2022832: 142458.
6 YUAN X L, LI C Y. An engineering high cycle fatigue strength prediction model for low plasticity burnished samples[J]. International Journal of Fatigue2017103: 318-326.
7 SUN R J, LI L H, GUO W, et al. Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy[J]. Materials Science and Engineering: A2018737: 94-104.
8 HATAMLEH O, LYONS J, FORMAN R. Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints[J]. International Journal of Fatigue200729(3): 421-434.
9 RUSCHAU J J, JOHN R, THOMPSON S R, et al. Fatigue crack nucleation and growth rate behavior of laser shock peened titanium[J]. International Journal of Fatigue199921: 199-209.
10 PEYRE P, FABBRO R, MERRIEN P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering: A1996210(1-2): 102-113.
11 CLAUER A H, LAHRMAN D F. Laser shock processing as a surface enhancement process[J]. Key Engineering Materials2001197: 121-144.
12 RUBIO-GONZáLEZ C, OCA?A J L, GOMEZ-ROSAS G, et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy[J]. Materials Science and Engineering: A2004386(1-2): 291-295.
13 FAIRAND B P, WILCOX B A, GALLAGHER W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics197243(9): 3893-3895.
14 BECKER R. Effects of crystal plasticity on materials loaded at high pressures and strain rates[J]. International Journal of Plasticity200420(11): 1983-2006.
15 FAN Y, WANG Y, VUKELIC S, et al. Wave-solid interactions in laser-shock-induced deformation processes[J]. Journal of Applied Physics200598(10): 104904.
16 LOOMIS E, PERALTA P, SWIFT D, et al. Cross-sectional TEM studies of plastic wave attenuation in shock loaded NiAl[J]. Materials Science and Engineering: A2006437(2): 212-221.
17 HATAMLEH O. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints[J]. International Journal of Fatigue200931(5): 974-988.
18 YE C, SUSLOV S, KIM B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia201159(3): 1014-1025.
19 BROCKMAN R A, BRAISTED W R, OLSON S E, et al. Prediction and characterization of residual stresses from laser shock peening[J]. International Journal of Fatigue201236(1): 96-108.
20 FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics199068(2): 775-784.
21 CELLARD C, RETRAINT D, FRAN?OIS M, et al. Laser shock peening of Ti-17 titanium alloy: influence of process parameters[J]. Materials Science and Engineering: A2012532: 362-372.
22 SANO Y, OBATA M, KUBO T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering: A2006417(1-2): 334-340.
23 葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金力学性能的影响[J]. 材料工程201341(9): 54-59.
  GE M Z, XIANG J Y, ZHANG Y K. Effect of laser shock processing on mechanical properties of AZ31B magnesium alloy[J]. Journal of Materials Engineering201341(9): 54-59 (in Chinese).
24 WANG X D, LI Y H, LI Q P, et al. Property and thermostablity study on TC6 titanium alloy nanostructure processed by LSP[J]. Transactions of Nanjing University of Aeronautics & Astronautics201229(1): 68-76.
25 LU J Z, LUO K Y, ZHANG Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia201058(16): 5354-5362.
26 LU J Z, LUO K Y, ZHANG Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia201058(11): 3984-3994.
27 张永康, 周立春, 任旭东, 等. 激光冲击TC4残余应力场的试验及有限元分析[J]. 江苏大学学报(自然科学版)200930(1): 10-13, 18.
  ZHANG Y K, ZHOU L C, REN X D, et al. Experiment and finite element analysis on residual stress field in laser shock processing TC4 titanium alloy[J]. Journal of Jiangsu University (Natural Science Edition)200930(1): 10-13, 18 (in Chinese).
28 张宏,唐亚新,余承业,等. 激光冲击处理对2024铝合金疲劳性能的影响[J]. 金属热处理学报199920(2): 59-64.
  ZHANG H, TANG Y X, YU C Y, et al. The effects of laser shock processing on the fatigue properties of 2024 aluminum alloy[J]. Transactions of Metal Heat Treatment199920(2): 59-64 (in Chinese).
29 廖培育, 王声波, 盛晶晶, 等. 实验研究脉冲强激光在钛合金靶中诱导的冲击波[J]. 应用激光200727(2): 110-112.
  LIAO P Y, WANG S B, SHENG J J, et al. Experimental study of high-power pulsed laser induced shock waves in Ti alloy target[J]. Applied Laser200727(2): 110-112 (in Chinese).
30 ALTENBERGER I, STACH E A, LIU G, et al. An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening[J]. Scripta Materialia200348(12): 1593-1598.
31 LIN B, LUPTON C, SPANRAD S, et al. Fatigue crack growth in laser-shock-peened Ti-6Al-4V aerofoil specimens due to foreign object damage[J]. International Journal of Fatigue201459: 23-33.
32 GANESH P, SUNDAR R, KUMAR H, et al. Studies on laser peening of spring steel for automotive applications[J]. Optics and Lasers in Engineering201250(5): 678-686.
33 DANE C B, HARRIS F, LAO E, et al. Advanced beam delivery for mobile laser peening[C]∥Proceedings of the 2nd International Conference on Laser Peening. San Francisco: Metal Improvement Company, 2010.
34 JENSEN D. Adaptation of LSP capability for use on F-22 raptor primary structure at an aircraft modification depot[C]∥Proceedings of the 2nd International Conference on Laser Peening. San Francisco: Metal Improve-ment Company, 2010.
35 LEAP M J, RANKIN J, HARRISON J, et al. Effects of laser peening on fatigue life in an arrestment hook shank application for naval aircraft[J]. International Journal of Fatigue201133(6): 788-799.
36 RANKIN J, RACANELLI T, CAMPBELL J, et al. Laser peening for enhanced fatigue lifetime of navy aircraft[C]∥Proceedings of the 2013 Aircraft Structural Integrity Program Conference, 2013.
37 CARLSON S. Laser shock peening (LSP) on F-35 critical bulkheads[C]∥Proceedings of the 2018 Aircraft Structural Integrity Program Conference, 2018.
38 CARUSO P. Structural certification of laser peening for F-35 safety critical bulkheads[C]∥Proceedings of the 2017 Aircraft Structural Integrity Program Conference, 2017.
39 CARLSON S. Qualification and Implementation of laser shock peening on F-35 & lessons learned[C]∥Proceedings of the 2020 Aircraft Structural Integrity Program Conference, 2020.
40 邹世坤. 激光冲击强化技术[M]. 北京: 国防工业出版社, 2021.
  ZOU S K. Laser shock peening technology[M]. Beijing: National Defense Industry Press, 2021 (in Chinese).
41 李鑫. 小孔结构激光冲击与超声复合强化及抗疲劳研究[D]. 镇江: 江苏大学, 2019.
  LI X. Study on laser shock and ultrasonic composite strengthening and anti-fatigue of small hole structures[D]. Zhenjiang: Jiangsu University, 2019 (in Chinese).
42 李旭. 厚板小孔构件激光冲击及复合强化研究[D]. 镇江: 江苏大学, 2018.
  LI X. Research on laser shock processing and composite strengthening of thick plate with small holes[D]. Zhenjiang: Jiangsu University, 2018 (in Chinese).
43 李龙. 小孔构件激光冲击强化研究及其特性分析[D]. 马鞍山: 安徽工业大学, 2016.
  LI L. The research on laser shock peening and characteristic analysis of small hole components[D]. Maanshan: Anhui University of Technology, 2016 (in Chinese).
44 蒋尧. 激光冲击能量对铝合金小孔件应力分布及疲劳寿命影响的研究[D]. 镇江: 江苏大学, 2016.
  JIANG Y. Research of the effect of stress distribution and fatigue life on aluminum alloy with fastener hole subjected to laser shock energy[D]. Zhenjiang: Jiangsu University, 2016 (in Chinese).
45 李振. 基于激光冲击的钛合金小孔构件残余应力分布及疲劳性能研究[D]. 镇江: 江苏大学, 2016.
  LI Z. Investigation of residual stress and fatigue performance of titanium alloy part with hole by laser shock processing[D]. Zhenjiang: Jiangsu University, 2016 (in Chinese).
46 王珉. 抗疲劳制造原理与技术[M]. 南京: 江苏科学技术出版社, 1999.
  WANG M. Principle and technology of anti-fatigue manufacture[M]. Nanjing: Phoenix Science Press, 1999 (in Chinese).
47 姜银方,程志军,丁报,等. 单面激光冲击孔壁残余应力与疲劳失效[J]. 激光与红外201444(10): 1090-1094.
  JIANG Y F, CHENG Z J, DING B, et al. Residual stress and fatigue failure in hole specimen by one side laser shock processing[J]. Laser & Infrared201444(10): 1090-1094 (in Chinese).
48 罗懋钟,曹子文,代军义,等. 典型孔结构激光冲击强化残余应力场特征及有限元分析[J]. 航空制造技术202063(17): 47-53.
  LUO M Z, CAO Z W, DAI J Y, et al. Stress field characteristics and finite element analysis of typical pore structures caused by laser shock peening[J]. Aeronautical Manufacturing Technology202063(17): 47-53 (in Chinese).
49 帅仕祥,吴俊峰,车志刚,等. 激光冲击强化Al7050-T7451合金紧固孔的残余应力研究[J]. 航空制造技术202265(9): 103-109.
  SHUAI S X, WU J F, CHE Z G, et al. Residual stresses of Al7050-T7451 alloy fastener holes with laser shock peening[J]. Aeronautical Manufacturing Technology202265(9): 103-109 (in Chinese).
50 韩培培,焦清洋,权纯逸,等. 激光冲击强化对7050铝合金小孔结构残余应力和疲劳性能的影响[J]. 金属热处理202146(11): 202-206.
  HAN P P, JIAO Q Y, QUAN C Y, et al. Effect of laser shock peening on residual stress and fatigue property of 7050 aluminium alloy with hole[J]. Heat Treatment of Metals202146(11): 202-206 (in Chinese).
51 ZHANG X Q, CHEN L S, YU X L, et al. Effect of laser shock processing on fatigue life of fastener hole[J]. Transactions of Nonferrous Metals Society of China201424(4): 969-974.
52 JIANG Y F, JI B, GAN X D, et al. Study on the effect of laser peening with different power densities on fatigue life of fastener hole[J]. Optics & Laser Technology2018106: 311-320.
53 SUN R J, LI L H, ZHU Y, et al. Fatigue of Ti-17 titanium alloy with hole drilled prior and post to laser shock peening[J]. Optics & Laser Technology2019115: 166-170.
54 姜银方,冯文龙,彭涛涛,等. 应力水平下的激光冲击小孔构件疲劳扩展研究[J]. 激光与红外201747(10): 1205-1209.
  JIANG Y F, FENG W L, PENG T T, et al. Research on fatigue growth of laser peening hole specimen under stress level[J]. Laser & Infrared201747(10): 1205-1209 (in Chinese).
55 赵勇, 姜银方, 彭涛涛, 等. 激光冲击强化铝合金小孔构件的疲劳寿命研究[J]. 航空制造技术201760(13): 38-43.
  ZHAO Y, JIANG Y F, PENG T T, et al. Research on fatigue life of aluminum alloy with fastener hole by laser shock processing[J]. Aeronautical Manufacturing Technology201760(13): 38-43 (in Chinese).
56 蒋尧, 姜银方, 李振, 等. 铝合金小孔件单双面激光冲击强化效果研究[J]. 激光技术201640(1): 90-93.
  JIANG Y, JIANG Y F, LI Z, et al. Investigation of effect of one-side and two-side laser shock processing on aluminum alloy small-hole specimens[J]. Laser Technology201640(1): 90-93 (in Chinese).
57 姜银方, 李娟, 潘禹, 等. 双面激光冲击次序对小孔件强化效果影响研究[J]. 激光技术201640(1): 82-85.
  JIANG Y F, LI J, PAN Y, et al. Investigation of effect of two-side laser shock order on small-hole specimen strengthening[J]. Laser Technology201640(1): 82-85 (in Chinese).
58 TAN Y, WU G, YANG J M, et al. Laser shock peening on fatigue crack growth behaviour of aluminium alloy[J]. Fatigue & Fracture of Engineering Materials & Structures200427(8): 649-656.
59 YANG J M, HER Y C, HAN N L, et al. Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes[J]. Materials Science and Engineering: A2001298(1-2): 296-299.
60 SIKHAMOV R, FOMIN F, KLUSEMANN B, et al. The influence of laser shock peening on fatigue properties of AA2024-T3 alloy with a fastener hole[J]. Metals202010(4): 495.
61 IVETIC G, MENEGHIN I, TROIANI E, et al. Fatigue in laser shock peened open-hole thin aluminium specimens[J]. Materials Science and Engineering: A2012534: 573-579.
62 LIU P, SUN S Y, XU S B, et al. Microstructure and properties in the weld surface of friction stir welded 7050-T7451 aluminium alloys by laser shock peening[J]. Vacuum2018152: 25-29.
63 黄潇,曹子文,常明,等. 激光冲击强化对TC4钛合金单面修饰激光焊接接头疲劳性能的影响[J]. 中国机械工程201829(1): 104-109.
  HUANG X, CAO Z W, CHANG M, et al. Effects of laser shock processing on fatigue performances of TC4 titanium alloy single-side laser modification welding joints[J]. China Mechanical Engineering201829(1): 104-109 (in Chinese).
64 苏纯, 周建忠, 黄舒, 等. 激光冲击强化对6061-T6铝合金TIG焊接接头疲劳性能的影响[J]. 激光与光电子学进展201552(6): 061403.
  SU C, ZHOU J Z, HUANG S, et al. Influence of laser shock processing on fatigue properties of 6061-T6 aluminum alloy TIG welded joints[J]. Laser & Optoelectronics Progress201552(6): 061403 (in Chinese).
65 JIA W J, ZHAO H Z, ZAN Y X, et al. Effect of heat treatment and laser shock peening on the microstructures and properties of electron beam welded Ti-6.5Al-1Mo-1V-2Zr joints[J]. Vacuum2018155: 496-503.
66 KASHAEV N, USHMAEV D, VENTZKE V, et al. On the application of laser shock peening for retardation of surface fatigue cracks in laser beam-welded AA6056[J]. Fatigue & Fracture of Engineering Materials & Structures202043(7): 1500-1513.
67 LUONG H, HILL M R. The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy[J]. Materials Science and Engineering: A2010527(3): 699-707.
68 HU Y X, CHENG H, YU J H, et al. An experimental study on crack closure induced by laser peening in pre-cracked aluminum alloy 2024-T351 and fatigue life extension[J]. International Journal of Fatigue2020130: 105232.
69 VAN ASWEGEN D C, POLESE C. Experimental and analytical investigation of the effects of laser shock peening processing strategy on fatigue crack growth in thin 2024 aluminium alloy panels[J]. International Journal of Fatigue2021142: 105969.
70 DHAKAL B, SWAROOP S. Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy[J]. Journal of Materials Processing Technology2020282: 116640.
71 KELLER S, HORSTMANN M, KASHAEV N, et al. Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening[J]. International Journal of Fatigue2019124: 265-276.
72 PAVAN M, FURFARI D, AHMAD B, et al. Fatigue crack growth in a laser shock peened residual stress field[J]. International Journal of Fatigue2019123: 157-167.
73 BUSSE D, GANGULY S, FURFARI D, et al. Optimised laser peening strategies for damage tolerant aircraft structures[J]. International Journal of Fatigue2020141: 105890.
74 ZHENG X W, LUO P, YUE G Q, et al. Analysis of microstructure and high-temperature tensile properties of 2060 Al-Li alloy strengthened by laser shock peening[J]. Journal of Alloys and Compounds2021860: 158539.
75 LEAP M, RANKIN J, HARRISON J, et al. Fatigue lifetime improvement of arrestment hook shanks by application of laser peening[C]∥Proceedings of the 25th Symposium of the International Committee on Aeronautical Fatigue. Dordrecht: Springer, 2009: 355-361.
76 牛一虹, 刘波, 丁同超, 等. 机翼机身接头耳片接触分析[J]. 塑性工程学报201219(5): 115-119.
  NIU Y H, LIU B, DING T C, et al. Contact analysis of wing-fuselage connection joint lug[J]. Journal of Plasticity Engineering201219(5): 115-119 (in Chinese).
77 IM J, GRANDHI R V, RO Y. Residual stress behaviors induced by laser peening along the edge of curved models[J]. Journal of Mechanical Science and Technology201226(12): 3943-3952.
78 VASU A, GOBAL K, GRANDHI R V. A computational methodology for determining the optimum re-peening schedule to increase the fatigue life of laser peened aircraft components[J]. International Journal of Fatigue201570: 395-405.
79 MACGILLIVRAY L K, DANE B, OSBORNE M, et al. F-22 laser shock peening depot transition and risk reduction[C]∥Proceedings of the 2010 Aircraft Structural Integrity Program Conference, 2010.
80 POLIN L, BUNCH J, CARUSO P, et al. F-22 program full scale component tests to validate the effects of laser shock peening[C]∥Proceedings of the 2011 Aircraft Structural Integrity Program Conference, 2011.
文章导航

/