新型航空金属丝网声衬掠流特性实验研究
收稿日期: 2023-02-09
修回日期: 2023-04-02
录用日期: 2023-05-08
网络出版日期: 2023-05-12
基金资助
国家重点研发计划(2021YFB3703900);国家自然科学基金(52206039);中国博士后创新人才支持计划(BX2021026);中国博士后面上基金(2021M700323);国家科技重大项目(2017-II-0008-0022);中国燃气轮机工程科学中心项目(P2022-A-II-003-001)
Experimental study on grazing flow characteristics of a new aeronautical wire mesh acoustic liner
Received date: 2023-02-09
Revised date: 2023-04-02
Accepted date: 2023-05-08
Online published: 2023-05-12
Supported by
National Key Research and Development Program of China(2021YFB3703900);National Natural Science Foundation of China(52206039);National Postdoctoral Program for Innovative Talents(BX2021026);China Postdoctoral Science Foundation(2021M700323);National Science and Technology Major Project(2017-II-0008-0022);Project of Science Center for Gas Turbine Project of China(P2022-A-II-003-001)
提出了一种新型航空线性声衬结构——烧结金属丝网声衬,并在流管实验台上采用直接提取法对传统穿孔板声衬、金属丝网穿孔板声衬及该声衬分别开展掠流实验。实验采用了一个合适的入射声压级以排除高声强效应干扰。实验结果表明:传统穿孔板声衬的低频掠流声阻随掠流速度增加而升高,高频掠流声抗随着掠流速度增加而下降;金属丝网穿孔板声衬也存在这一趋势,但变化幅度有所减弱;而烧结金属丝网声衬因其去掉了传统穿孔板结构,采用烧结金属丝网作为声衬面板,提高了黏性声阻,从而使其掠流声阻抗在测试范围内基本不随掠流速度变化,相较于其他两种声衬对掠流具有更好的线性,更加符合航发外涵后传降噪最优声阻抗的变化趋势。
廖峻锋 , 景晓东 , 邱祥海 , 翟勇磊 , 岳喜山 , 马双超 , 杜林 , 孙晓峰 . 新型航空金属丝网声衬掠流特性实验研究[J]. 航空学报, 2023 , 44(21) : 528537 -528537 . DOI: 10.7527/S1000-6893.2023.28537
The sintered wire mesh liner, as a new aeronautical linear liner, is proposed. A grazing flow experiment is conducted on a flow duct set up using the straightforward method, which adopts an appropriate incident sound pressure level to exclude the high sound intensity effect, and a conventional perforated liner, a wire mesh perforated liner, and a sintered wire mesh liner are tested. This experiment shows that, for the conventional perforated liner, the grazing flow acoustic resistance at low frequencies and the grazing flow acoustic reactance at high frequencies exhibit significant increase and decreases as the flow velocity increases, respectively. As for the wire mesh perforated liner, this trends suppressed to some extent but still exists. However, the sintered wire mesh liner, which departs from the traditional perforated plate structure and uses sintered wire mesh as its liner panel, enhances its viscous acoustic resistance. As a result, both the resistance and reactance due to the grazing flow effect change very little within the tested flow velocity range. This liner offers superior linearity in response to grazing flow and is more consistent with the trend of the optimal acoustic impedance for aeroengine bypass backward noises.
1 | BERTSCH E, SIMONS D, SNELLEN M. Aircraft noise: The major sources, modelling capabilities, and reduction possibilities: IB 224-2015 A 110 [R]. K?ln: Deutsches Zentrum für Luft- und Raumfahrt (DLR),2015. |
2 | MéRY F, PIOT E, SEBBANE D, et al. Experimental assessment of the effect of temperature gradient across an aeroacoustic liner[J]. Journal of Aircraft, 2019, 56(5): 1809-1821. |
3 | HERSCH A S, WALKER B. Effect of grazing flow on the acoustic impedance of Helmholtz resonators consisting of single and clustered orifices[J]. The Journal of the Acoustical Society of America, 1982, 72(2): 642. |
4 | YU J A, RUIZ M, KWAN H W. Validation of Goodrich perforate liner impedance model using NASA Langley test data[C]∥ Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). Reston: AIAA, 2008. |
5 | 辛博. 切向流对声衬声阻抗的影响及声衬表面非稳定波机理的研究[D]. 北京:北京航空航天大学,2019: 70-93. |
XIN B. Investigation of grazing flow effects on the acoustic liner impedance and the mechanism of hydrodynamic instability over a liner[D]. Beijing:Beihang University, 2019: 70-93 (in Chinese). | |
6 | CUMMINGS A. The effects of grazing turbulent pipe-flow on the impedance of an orifice[J]. Acta Acustica United with Acustica, 1986, 61(4): 233-242. |
7 | KOOI J, SARIN S. An experimental study of the acoustic impedance of Helmholtz resonator arrays under a turbulent boundary layer[C]∥ Proceedings of the 7th Aeroacoustics Conference. Reston: AIAA, 1981. |
8 | INGARD U, ISING H. Acoustic nonlinearity of an orifice[J]. The Journal of the Acoustical Society of America, 1967, 42(1): 6-17. |
9 | QIU X H, DU L, JING X D, et al. The Cremer concept for annular ducts for optimum sound attenuation[J]. Journal of Sound and Vibration, 2019, 438: 383-401. |
10 | QIU X H, JING X D, DU L, et al. Mode-merging design method for nonlocally reacting liners with porous materials[J]. AIAA Journal, 2020, 58(6): 2533-2545. |
11 | QIU X H, DU L, JING X D, et al. Optimality analysis of bulk-reacting liners based on mode-merging design method[J]. Journal of Sound and Vibration, 2020, 485: 115581. |
12 | ZHANG J, DU L, QIU X, et al. Axial wave number-merging design method for finite-length liners[J]. Journal of Sound and Vibration, 2023, 565: 117896. |
13 | GERALD W, JOHN W, ALAN S. Advanced turbofan duct liner concepts:NASA/CR-1999209002[R]. Washington, D.C.: NASA, 1999. |
14 | PARROTT T L, WATSON W R, JONES M G. Experimental validation of a two-dimensional shear-flow model for determining acoustic impedance:NASA-TP-2679 [R]. Washington, D.C.: NASA, 1987. |
15 | MAA D Y. Microperforated-panel wideband absorbers[J]. Noise Control Engineering Journal, 1987, 29(3): 77. |
16 | MAA D Y. Potential of microperforated panel absorber[J]. The Journal of the Acoustical Society of America, 1998, 104(5): 2861-2866. |
17 | COBO P, RUIZ H, ALVAREZ J. Double-layer microperforated panel/porous absorber as liner for anechoic closing of the test section in wind tunnels[J]. Acta Acustica United with Acustica, 2010, 96(5): 914-922. |
18 | PRIMUS J, PIOT E, SIMON F, et al. ONERA-NASA cooperative effort on liner impedance eduction[C]∥ Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2013. |
19 | SYED A, YU J, KWAN H, et al. The steady flow resistance of perforated sheet materials in high speed grazing flows: NASA CR 2002-211749[R]. Washington, D.C.: NASA, 2002. |
20 | HERSH A. Effects of grazing flow on the steady-state flow resistance and acoustic impedance of thin porous-faced liners[C]∥ Proceedings of the 4th Aeroacoustics Conference. Reston: AIAA, 1977. |
21 | RICE E. A model for the acoustic impedance of linear suppressor materials bonded on perforated plate[C]∥ Proceedings of the 7th Aeroacoustics Conference. Reston: AIAA, 1981. |
22 | QIU X H, JING X D, DU L, et al. Nonlinear effect of wire mesh liners subjected to high sound pressure level[J]. AIAA Journal, 2022, 60(9): 5521-5532. |
23 | ZHANG X W, QIU X H, JING X D, et al. Numerical simulation of nonlinear effect of wire mesh liner based on finite element method in time domain[C]∥ Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2019. |
24 | QIU X H, LIAO J F, DU L, et al. Acoustic effect of wire mesh liners subjected to grazing flow[J]. Journal of Sound and Vibration, inpress. |
25 | JING X D, PENG S, SUN X F. A straightforward method for wall impedance eduction in a flow duct[J]. The Journal of the Acoustical Society of America, 2008, 124(1): 227-234. |
26 | QIU X H, XIN B, JING X D. Straightforward impedance eduction method for non-grazing incidence wave with multiple modes[J]. Journal of Sound and Vibration, 2018, 432: 1-16. |
27 | QIU X H, YANG J, JING X D, et al. Mirror-based multimodal straightforward method for impedance eduction using a zigzag array[J]. Journal of Sound and Vibration, 2023, inpress. |
28 | QIU X H, XIN B, WU L, et al. Investigation of straightforward impedance eduction method on single-degree-of-freedom acoustic liners[J]. Chinese Journal of Aeronautics, 2018, 31(12): 2221-2233. |
29 | JING X D, WANG Y J, DU L, et al. Impedance eduction experiments covering higher frequencies based on the multimodal straightforward method[J]. Applied Acoustics, 2023, 206: 109327. |
30 | INGARD U. Influence of fluid motion past a plane boundary on sound reflection, absorption, and transmission[J]. The Journal of the Acoustical Society of America, 1959, 31(7): 1035-1036. |
31 | MYERS M K. On the acoustic boundary condition in the presence of flow[J]. Journal of Sound and Vibration, 1980, 71(3): 429-434. |
32 | 张晓薇. 降噪声衬声涡转化机理研究[D]. 北京: 北京航空航天大学, 2019: 49, 80-81. |
ZHANG X W. Study on the mechanism of vortex conversion in acoustic liners on the aircraft engine [D]. Beijing:Beihang University, 2019: 49, 80-81 (in Chinese). | |
33 | 邱祥海. 航空声衬优化设计与声阻抗提取方法研究[D]. 北京: 北京航空航天大学,2020: 103-131. |
QIU X H. Research on the design and the impedance eduction method for aeronautic acoustic liners[D]. Beijing: Beihang University, 2020: 103-131 (in Chinese). | |
34 | JING X D, SUN X F, WU J S, et al. Effect of grazing flow on the acoustic impedance of an orifice[J]. AIAA Journal, 2001, 39: 1478-1484. |
35 | HOWE M S. The dissipation of sound at an edge[J]. Journal of Sound and Vibration, 1980, 70(3): 407-411. |
36 | YONG W. Determination of critical Reynolds number at outlets of free jet flows[J]. Journal of Hohai University(Natural Sciences), 2007, 35(6):699-703. |
37 | TAM C K W, JU H, JONES M G, et al. A computational and experimental study of slit resonators[J]. Journal of Sound and Vibration, 2005, 284(3-5): 947-984. |
/
〈 |
|
〉 |