多囊体临近空间飞艇多要素耦合建模与仿真
收稿日期: 2023-01-03
修回日期: 2023-02-22
录用日期: 2023-04-28
网络出版日期: 2023-05-12
基金资助
国家自然科学基金(62073019)
Multi-element coupled modeling and simulation for multi-capsule near-space airships
Received date: 2023-01-03
Revised date: 2023-02-22
Accepted date: 2023-04-28
Online published: 2023-05-12
Supported by
National Natural Science Foundation of China(62073019)
针对多囊体临近空间飞艇多要素耦合仿真及长航时能力评估的迫切需求,详细阐述了多囊体临近空间飞艇六自由度位置与姿态动力学模型、环境热力学模型、内外囊体热力学模型及囊体氦气损失模型,通过位置、时间、姿态、空速等动力学输出信息与压力成形体积、氦气质量等热力学输出信息实现平台力热动态耦合,能够全面反映飞艇在大气环境及操纵力作用下力热耦合变化规律,具备飞艇平台超热超压安全下的长航时定量评估能力。通过仿真发现,囊体内氦气在随风飘状态下最大超热达到55 ℃左右,为保证内外囊体白天压力安全需主动释放氦气导致飞行高度上升约100 m,夜晚囊体内压将至0 Pa无法维形保持浮力导致驻空高度快速降低,姿态振荡加剧,驻空航时仅有26.5 h,且动力全开无法获得稳定的航向飞行,空速来流降温无法最大效能发挥,需要控制系统接入实现动态闭环航路飞行,才能实现长航时飞行,具有重要的工程应用价值。
史智广 , 杨玉洁 , 左宗玉 . 多囊体临近空间飞艇多要素耦合建模与仿真[J]. 航空学报, 2023 , 44(16) : 228451 -228451 . DOI: 10.7527/S1000-6893.2023.28451
Based on the urgent demand for multi-element coupled simulation and long-endurance capacity assessment of multi-capsule near-space airship, this paper describes six-degree-of-freedom position and attitude dynamics model, environmental thermodynamic model, inner-outer capsule thermodynamic model, and capsule helium loss model of multi-capsule near-space airships in detail. The dynamic and thermal coupling for the platform are realized through dynamic output information (e.g., position, time, attitude and airspeed) and thermodynamic output information (e.g., pressure forming volume and helium mass), which can fully reflect the dynamic and thermal coupled rule of airships under atmospheric environment and the effect of operation, and reveals the quantitative long-endurance assessment ability for airships under the safety of overheat and overpressure. Through simulation, it is found that the maximum overheat of helium in the capsule reaches about 55 ℃ in the condition of floating with wind. To ensure the pressure safety of the internal and external capsule during the day, helium should be released actively, which leads to the flight altitude increase of approximately 100 m. At night, the pressure in the capsule will reach 0 Pa, and the buoyancy and the shape cannot be maintained, causing a rapid decrease of floating altitude,intensified attitude oscillation, and the floating duration of 26.5 h only. In addition, airships cannot achieve stable course flight with full power flight,and the airspeed inflow cooling cannot be maximized. A control system needs to be connected to achieve dynamic closed-loop route flight, so as to realize long-endurance flight, which has important engineering application value.
1 | 邓小龙, 麻震宇, 杨希祥, 等. 基于多层节点模型的平流层浮空器热力学分析[J]. 上海交通大学学报, 2020, 54(7): 765-770. |
DENG X L, MA Z Y, YANG X X, et al. Thermal characteristics analysis of a stratospheric aerostat based on multilayer node model[J]. Journal of Shanghai Jiao Tong University, 2020, 54(7): 765-770 (in Chinese). | |
2 | 王晓亮, 谢炜程. 平流层飞艇昼夜驻空蒙皮热特性研究[J]. 装备环境工程, 2020, 17(1): 13-19. |
WANG X L, XIE W C. Thermal characteristics analysis of stratospheric airships envelope[J]. Equipment Environmental Engineering, 2020, 17(1): 13-19 (in Chinese). | |
3 | 吴耀, 姚伟, 王超, 等. 利用自然能临近空间浮空器的热特性分析[J]. 宇航学报, 2015, 36(7): 784-790. |
WU Y, YAO W, WANG C, et al. Thermal characteristics analysis of a near-space aerostat driven by the natural energy[J]. Journal of Astronautics, 2015, 36(7): 784-790 (in Chinese). | |
4 | 程晨. 平流层浮空器瞬态热模型及热特性研究[D]. 上海: 上海交通大学, 2019. |
CHENG C. Study on transient thermal model and thermal characteristics of stratospheric aerostat[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese). | |
5 | LIU Q, WU Z, ZHU M, et al. A comprehensive numerical model investigating the thermal-dynamic performance of scientific balloon[J]. Advances in Space Research, 2014, 53(2): 325-338. |
6 | 张俊韬, 侯中喜, 柳兆伟. 平流层飞艇内部氦气的自然对流研究[C]∥第二届高分辨率对地观测学术年会论文集. 北京:中国宇航学会, 2013: 1-14. |
ZHANG J T, HOU Z X, LIU Z W. Natural convection of helium in a stratospheric airship[C]∥ The 2nd Annual Conference on High Resolution Earth Observation.Beijing: Chinese Society of Astronautics, 2013: 1-14 (in Chinese). | |
7 | 程晨, 王晓亮. 考虑蒙皮透射率的飞艇热力学模型及其热特性[J]. 上海交通大学学报, 2021, 55(7): 868-877. |
CHENG C, WANG X L. Thermal dynamic model and thermal characteristics of airships considering skin transmittance[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 868-877 (in Chinese). | |
8 | LIU Q, YANG Y C, LI Z J, et al. Modeling and simulation of the thermal performance of a stratospheric airship with photovoltaic array[C]∥ AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2016. |
9 | MENG J H, YAO Z B, DU H F, et al. Thermal protection method of the solar array for stratospheric airships[J]. Applied Thermal Engineering, 2017, 111: 802-810. |
10 | 吕程, 姜鲁华, 才晶晶. 薄膜太阳能电池对飞艇内氦气温度的影响[J]. 计算机仿真, 2016, 33(7): 104-110, 199. |
LV C, JIANG L H, CAI J. The influence of thin film solar cells on the temperature of helium inside the airship[J]. Computer Simulation, 2016, 33(7): 104-110, 199 (in Chinese). | |
11 | 刘东旭, 杨永强, 吕明云, 等. 蒙皮热辐射特性对平流层浮空器氦气温度影响[J]. 北京航空航天大学学报, 2010, 36(7): 836-840. |
LIU D X, YANG Y Q, LV M Y, et al. Effect of envelop thermal radiative properties on the stratospheric super-pressure LTA vehicle helium temperature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 836-840 (in Chinese). | |
12 | 刘帅. 低空大型飞艇热环境数值模拟及试验研究[D]. 合肥: 合肥工业大学, 2019. |
LIU S. Numerical simulation and experimental study on thermal environment of low altitude large airship[D]. Hefei: Hefei University of Technology, 2019 (in Chinese). | |
13 | 王旭巍, 李兆杰, 才晶晶. 平流层飞艇设备舱的被动温控[J]. 计算机仿真, 2013, 30(8): 54-59. |
WANG X W, LI Z J, CAI J J. Stratospheric airship equipment cabin’s passive temperature control[J]. Computer Simulation, 2013, 30(8): 54-59 (in Chinese). | |
14 | 字贵才, 贺卫亮. 临近空间环境下封闭方腔内耦合换热特性[J]. 北京航空航天大学学报, 2018, 44(6): 1283-1293. |
ZI G C, HE W L. Conjugate heat transfer characteristics of enclosure cavity in near space environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1283-1293 (in Chinese). | |
15 | 邓丽君. 一种临近空间浮空器热控系统的研究[D]. 南京: 南京理工大学, 2009. |
DENG L J. Research on thermal control system of a near-space aerostat[D]. Nanjing: Nanjing University of Science and Technology, 2009 (in Chinese). | |
16 | 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京:北京航空航天大学出版社, 2005. |
FANG Z P, CHEN W C, ZHANG S G. Flight dynamics of aircraft [M]. Beijing: Beihang University Press, 2005 (in Chinese). | |
17 | 孙俊, 朱东方, 孙杰, 等. 超长柔性航天器高效动力学建模与控制[C]∥第十四届全国振动理论及应用学术会议(NVTA2021)摘要集.天津:中国振动工程学会,2021: 16. |
SUN J, ZHU D F, SUN J, et al. Efficient dynamic modeling and control of ultra-long flexible spacecraft[C]∥The 14th National Conference on Vibration Theory and Application (NVTA2021). Tianjin: Chinese Society of Vibration Engineering, 2021: 16 (in Chinese). | |
18 | 唐旭. 含内置多氦气囊飞艇稳定性分析及控制律设计[D]. 南京: 南京航空航天大学, 2021. |
TANG X. Stability analysis and control law design of airship with built-in multi-helium airbag[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
19 | MUELLER J B, PALUSZEKT M A, ZHAO Y. Development of an aerodynamic model and control law design for a high altitude airship[C]∥ The 3rd AIAA Unmanned Unlimited Technical Conference, Workshop and Exhibit. Reston: AIAA, 2004. |
20 | 郭虓. 平流层浮空器轨迹优化研究[D].北京:北京航空航天大学, 2013. |
GUO X. Research on trajectory optimization of strato spheric aeroplane [D]. Beijing:Beihang University, 2013 (in Chinese). | |
21 | 郑黎明, 杏建军, 陈子昂, 等. 平流层飞艇上升段轨迹优化[J]. 计算机仿真, 2016, 33(12): 80-84. |
ZHENG L M, XING J J, CHEN Z A, et al. Ascent trajectory optimization for stratospheric airship[J]. Computer Simulation, 2016, 33(12): 80-84 (in Chinese). | |
22 | 郑黎明, 郑鑫, 黄海涛, 等. 平流层飞艇上升段轨迹优化的初值选取方法[J]. 制导与引信, 2017, 38(3): 53-59. |
ZHENG L M, ZHENG X, HUANG H T, et al. Initial value selection method of ascent minimum-time trajectory optimization for stratospheric airship[J]. Guidance & Fuze, 2017, 38(3): 53-59 (in Chinese). | |
23 | 袁明清, 赵海涛, 陈政, 等. 温度对平流层飞艇囊体材料渗漏性能的影响[J]. 装备环境工程, 2020, 17(1): 6-12. |
YUAN M Q, ZHAO H T, CHEN Z, et al. Effect of temperature on the permeability of stratospheric airship capsule material[J]. Equipment Environmental Engineering, 2020, 17(1): 6-12 (in Chinese). | |
24 | 史智广, 左宗玉, 杨玉洁. 平流层飞艇气动特性相似缩比分析与风洞试验[J/OL].国防科技大学学报,(2023-03-20)[2023-04-18].. |
SHI Z G, ZUO Z Y, YANG Y J. Scaled similarity analysis of aerodynamic characteristics and wind tunnel test for stratospheric airship [J/OL]. Journal of National University of Defense Technology, (2023-03-20) [2023-04-18]. (in Chinese). | |
25 | 基里林·阿列克桑德拉·尼卡拉伊维奇.现代飞艇设计导论[M].吴飞,王培美,译. 北京: 国防工业出版社, 2009. |
Αлександр Николаевич Кирилин. Introduction to modern airship design[M].WU F, WANG P M, translator. Beijing: National Defense Industry Press, 2009 (in Chinese). | |
26 | 李赫. 有粘流中飞艇艇体气动力计算方法研究[D]. 厦门: 厦门大学, 2016. |
LI H. Study on aerodynamic calculation method of airship hull in viscous flow[D]. Xiamen: Xiamen University, 2016 (in Chinese). | |
27 | TUCKERMAN L B. Inertia factors of ellipsoids for use in airship design:Report No.20[R]. Washington, D.C.: Government Printing Office, 1925. |
28 | 苗景刚, 王帆, 周江华, 等. 风场环境下平流层飞艇运动建模[J]. 系统科学与数学, 2013, 33(6): 685-694. |
MIAO J G, WANG F, ZHOU J H, et al. Motion modeling of stratospheric airship in wind field[J]. Journal of Systems Science and Mathematical Sciences, 2013, 33(6): 685-694 (in Chinese). | |
29 | 张先炳. 平流层飞艇的航迹规划方法研究[D]. 北京: 北京航空航天大学, 2019. |
ZHANG X B. Research on flight path planning method of stratospheric airship [D]. Beijing: Beihang University, 2019 (in Chinese). | |
30 | 刘东旭, 樊彦斌, 马云鹏, 等. 氦气渗透对高空长航时浮空器驻空能力影响[J]. 宇航学报, 2010, 31(11): 2477-2482. |
LIU D X, FAN Y B, MA Y P, et al. Effect of helium permeability on working endurance high altitude long duration LTA vehicle[J]. Journal of Astronautics, 2010, 31(11): 2477-2482 (in Chinese). | |
31 | 史智广, 张小强, 李锦清, 等. 平流层浮空器保压指标对驻空性能的影响[J]. 航空学报, 2016, 37(6): 1833-1840. |
SHI Z G, ZHANG X Q, LI J Q, et al. Effect of ground pressure-maintenance index on stagnation performance of stratospheric aerostats[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1833-1840 (in Chinese). |
/
〈 |
|
〉 |