综述

低空智联网组网与控制理论方法

  • 吴启晖 ,
  • 董超 ,
  • 贾子晔 ,
  • 崔灿 ,
  • 冯斯梦 ,
  • 周福辉 ,
  • 谢华
展开
  • 1.南京航空航天大学 电子信息工程学院 电磁频谱空间认知动态系统工信部重点实验室,南京 211106
    2.南京航空航天大学 通用航空与飞行学院,南京 211106
.E-mail: dch@nuaa.edu.cn

收稿日期: 2023-04-04

  修回日期: 2023-04-18

  录用日期: 2023-04-27

  网络出版日期: 2023-05-06

基金资助

国家重点研发计划(2022YFB3104502);江苏省前沿引领项目(BK20222013)

Networking and control mechanism for low-altitude intelligent networks

  • Qihui WU ,
  • Chao DONG ,
  • Ziye JIA ,
  • Can CUI ,
  • Simeng FENG ,
  • Fuhui ZHOU ,
  • Hua XIE
Expand
  • 1.Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space,Ministry of Industry and Information Technology,College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing  211106,China
    2.College of General Aviation and Flight,Nanjing University of Aeronautics and Astronautics,Nanjing  211106,China
E-mail: dch@nuaa.edu.cn

Received date: 2023-04-04

  Revised date: 2023-04-18

  Accepted date: 2023-04-27

  Online published: 2023-05-06

Supported by

National Key R&D Program of China(2022YFB3104502);Natural Science Foundation on Frontier Leading Technology Basic Research Project of Jiangsu(BK20222013)

摘要

低空智联网(LAIN)作为一种新兴的智能网络,依托于空天地海基础设施构成数字智能网络体系,是空天地一体化网络的重要组成部分,可支撑实现第六代通信技术无缝泛在互联,推动智能网络服务由地面向低空空域的发展。然而,LAIN正处在技术突破阶段,仍面临以下关键挑战尚未解决,主要包括低空空域安全管控困难、频谱干扰严重、多维资源紧缺等问题。因此,面向LAIN体系架构与安全管控问题,综述了目前低空网络的发展现状,指出其对于产业技术变革的意义;然后,从频谱资源、网络资源以及空域资源管理的角度出发,分析了LAIN相关技术的国内外研究现状;进一步,剖析低空飞行器空地频谱共享、感传算一体化组网覆盖、低空空域智能监管等关键技术,为LAIN和低空空域的管理指明进一步的发展方向;最后,提出了LAIN的应用示范,旨在面向低空空域高效运行与安全的重大需求,为下一代空天地一体化网络的进一步发展提供理论依据和技术。

本文引用格式

吴启晖 , 董超 , 贾子晔 , 崔灿 , 冯斯梦 , 周福辉 , 谢华 . 低空智联网组网与控制理论方法[J]. 航空学报, 2024 , 45(3) : 28809 -028809 . DOI: 10.7527/S1000-6893.2023.28809

Abstract

Low-Altitude Intelligent Network (LAIN), as a new type of intelligent network, relies on space-air-ground-sea facilities to constitute a digital intelligent network system. It is a key component of the space-air-ground integrated network, and can support the seamless and ubiquitous connections of the sixth generation communication technology and promote the development of intelligent network service from ground to low-altitude space. However, LAIN is still in the developing stage and faces the following key challenges: intractability of aerial control, severe spectrum interference, and multi-dimensional resource limitation. This article focuses on the issues of LAIN architecture and safety control, including the current development status of low-altitude network and its significance for industrial technology transformation. Then, from the perspective of spectrum resources, network resources, and airspace resource management, the recent related works are analyzed. Furthermore, we analyze the key technologies such as low-altitude aircraft air-ground spectrum sharing, sensing, transmission, computing networking coverage, low-altitude airspace intelligent supervision, and point out future development directions. Finally, an application demonstration of LAIN is proposed, aiming to satisfy the significant requirements for efficient operation and safety in low-altitude airspace, and providing the theoretical basis as well as technology for the further development of the next generation space-air-ground integrated network.

参考文献

1 樊邦奎, 李云, 张瑞雨. 浅析低空智联网与无人机产业应用[J]. 地理科学进展202140(9): 1441-1450.
  FAN B K, LI Y, ZHANG R Y. Initial analysis of low-altitude Internet of intelligences (IOI) and the applications of unmanned aerial vehicle industry[J]. Progress in Geography202140(9): 1441-1450 (in Chinese).
2 张海君, 陈安琪, 李亚博, 等. 6G移动网络关键技术[J]. 通信学报202243(7): 189-202.
  ZHANG H J, CHEN A Q, LI Y B, et al. Key technologies of 6G mobile network[J]. Journal on Communications202243(7): 189-202 (in Chinese).
3 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报202244(3): 781-789.
  CHEN X Y, SHENG M, LI B, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology202244(3): 781-789 (in Chinese).
4 邱文静, 韩晨, 刘爱军. 干扰环境下无人机群动态频谱决策方法[J]. 计算机科学202249(12): 326-331.
  QIU W J, HAN C, LIU A J. Dynamic spectrum decision-making method for UAV swarms in jamming environment[J]. Computer Science202249(12): 326-331 (in Chinese).
5 朱圣铭, 杨霄鹏, 肖楠, 等. 星地认知网络中基于图论的动态频谱划分算法[J]. 空军工程大学学报(自然科学版)202223(3): 41-46.
  ZHU S M, YANG X P, XIAO N, et al. A dynamic spectrum division algorithm based on graph theory in terrestrial-satellite cognitive network[J]. Journal of Air Force Engineering University (Natural Science Edition)202223(3): 41-46 (in Chinese).
6 SHEN F, DING G R, WANG Z, et al. UAV-based 3D spectrum sensing in spectrum-heterogeneous networks[J]. IEEE Transactions on Vehicular Technology201968(6): 5711-5722.
7 SHANG B D, LIU L J, RAO R M, et al. 3D spectrum sharing for hybrid D2D and UAV networks[J]. IEEE Transactions on Communications202068(9): 5375-5389.
8 WANG Z, ZHOU F H, WANG Y H, et al. Joint 3D trajectory and resource optimization for a UAV relay-assisted cognitive radio network[J]. China Communications202118(6): 184-200.
9 NIE R L, XU W J, ZHANG Z, et al. Max-Min distance clustering based distributed cooperative spectrum sensing in cognitive UAV networks[C]∥ICC 2019 - 2019 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2019: 1-6.
10 余琪琦, 王中豪, 张福来, 等. 分级分布式无人机协作频谱感知方法[J]. 电讯技术202363(11): 1750-1756.
  YU Q Q, WANG Z H, ZHANG F L, et al. A hierarchical distributed UAV cooperative spectrum sensing method[J]. Telecommunication Engineering202363(11): 1750-1756 (in Chinese).
11 廖乃稳, 钱鹏智, 陈勇, 等. 面向感知任务的无人机数量编配与频谱资源联合规划方法[J]. 电波科学学报202338(5): 764-772.
  LIAO N W, QIAN P Z, CHEN Y, et al. A joint planning method for the number of UAVs and spectrum resource in perceptual missions[J]. Chinese Journal of Radio Science202338(5): 764-772 (in Chinese).
12 王志宏, 冷甦鹏, 熊凯. 面向无人机集群协同感知的多智能体资源分配策略[J]. 物联网学报20237(1): 18-26.
  WANG Z H, LENG S P, XIONG K. Multi-agent resource allocation strategy for UAV swarm-based cooperative sensing[J]. Chinese Journal on Internet of Things20237(1): 18-26 (in Chinese).
13 高杨, 李东生, 程泽新. 无人机分布式集群态势感知模型研究[J]. 电子与信息学报201840(6): 1271-1278.
  GAO Y, LI D S, CHENG Z X. UAV distributed swarm situation awareness model[J]. Journal of Electronics & Information Technology201840(6): 1271-1278 (in Chinese).
14 CHEN X, FENG Z Y, WEI Z Q, et al. Performance of joint sensing-communication cooperative sensing UAV network[J]. IEEE Transactions on Vehicular Technology202069(12): 15545-15556.
15 MENG K T, WU Q Q, MA S D, et al. UAV trajectory and beamforming optimization for integrated periodic sensing and communication[J]. IEEE Wireless Communications Letters202211(6): 1211-1215.
16 CAI Y X, WEI Z Q, LI R D, et al. Joint trajectory and resource allocation design for energy-efficient secure UAV communication systems[J]. IEEE Transactions on Communications202068(7): 4536-4553.
17 JIA Z Y, SHENG M, LI J D, et al. Toward data collection and transmission in 6G space-air-ground integrated networks: Cooperative HAP and LEO satellite schemes[J]. IEEE Internet of Things Journal20229(13): 10516-10528.
18 廖乃稳, 何攀峰, 张余, 等. 无人机中继通信的轨迹与资源分配优化方法[J]. 移动通信202347(2): 92-98.
  LIAO N W, HE P F, ZHANG Y, et al. Trajectory and resource allocation optimization method for UAV-relaying communication[J]. Mobile Communications202347(2): 92-98 (in Chinese).
19 吴迪, 钱鹏智, 陈勇. 多无人机辅助通信中用户匹配与频谱资源联合优化方法[J]. 电讯技术202363(11): 1742-1749.
  WU D, QIAN P Z, CHEN Y. Joint user matching and spectrum resource optimization in multi-UAV auxiliary communications[J]. Telecommunication Engineering202363(11): 1742-1749 (in Chinese).
20 郭鸿志, 王宇涛, 王佳黛, 等. 面向复杂任务的多无人机协同计算资源分配与优化[J]. 无线电通信技术202248(6): 1012-1018.
  GUO H Z, WANG Y T, WANG J D, et al. Multi-UAV cooperative computing resource allocation and optimization for complex tasks[J]. Radio Communications Technology202248(6): 1012-1018 (in Chinese).
21 ZHANG J, ZHOU L, ZHOU F H, et al. Computation-efficient offloading and trajectory scheduling for multi-UAV assisted mobile edge computing[J]. IEEE Transactions on Vehicular Technology202069(2): 2114-2125.
22 PENG H X, SHEN X M. Multi-agent reinforcement learning based resource management in MEC- and UAV-assisted vehicular networks[J]. IEEE Journal on Selected Areas in Communications202139(1): 131-141.
23 LIU B H, LIU C X, PENG M G. Computation offloading and resource allocation in unmanned aerial vehicle networks[J]. IEEE Transactions on Vehicular Technology202372(4): 4981-4995.
24 JIA Z Y, WU Q H, DONG C, et al. Hierarchical aerial computing for Internet of Things via cooperation of HAPs and UAVs[J]. IEEE Internet of Things Journal202310(7): 5676-5688.
25 李子姝, 谢人超, 孙礼, 等. 移动边缘计算综述[J]. 电信科学201834(1): 87-101.
  LI Z S, XIE R C, SUN L, et al. A survey of mobile edge computing[J]. Telecommunications Science201834(1): 87-101 (in Chinese).
26 张换然, 申凌峰, 任资卓, 等. 无人机辅助智能边缘网络技术综述[J/OL]. 电讯技术,(2023-02-09)[2023-04-22]. .
  ZHANG H R, SHEN L F, REN Z Z, et al. A comprehensive survey on unmanned aerial vehicle assisted intelligent edge network[J/OL]. Telecommunication Engineering, (2023-02-09)[2023-04-22]. (in Chinese).
27 LIU Z Q, NAN Y, YANG Y. Airspace conflict detection method based on subdivision grid[C]∥Artificial Intelligence in China. Singapore: Springer, 2022: 670-677.
28 CAI M, WAN L J, JIAO Z Q, et al. Clustering method of large-scale battlefield airspace based on multi A* in airspace grid system[J]. Applied Sciences202212(22): 11396.
29 谢华, 苏方正, 尹嘉男, 等. 复杂低空无人机飞行冲突网络建模与精细管理[J]. 航空学报202344(18): 221-241.
  XIE H, SU F Z, YIN J N, et al. Network modeling and refined management of UAV flight conflicts in complex low altitude airspace[J]. Acta Aeronautica et Astronautica Sinica202344(18): 221-241 (in Chinese).
30 邱诚, 黄大庆, 王浩雪, 等. 基于改进蚁群算法的网格空间航迹规划[J]. 电子设计工程202331(4): 137-142.
  QIU C, HUANG D Q, WANG H X, et al. Track planning in grid space based on improved ant colony algorithm[J]. Electronic Design Engineering202331(4): 137-142 (in Chinese).
31 CORBETTA M, BANERJEE P, OKOLO W, et al. Real-time UAV trajectory prediction for safety monitoring in low-altitude airspace[C]∥Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
32 BHUSAL R, KHANAL A, SUBBARAO K, et al. Uncertainty quantification and collision assessment in a traffic of unmanned aerial vehicles[C]∥Proceedings of the AIAA SCITECH 2023 Forum. Reston: AIAA, 2023.
33 LIU S T, ZHANG Z Y, LIU S C. Construction and capability analysis of air-space-ground integrated early warning and detection system[C]∥Proc SPIE 12332, International Conference on Intelligent Systems, Communications, and Computer Networks (ISCCN 2022). 2022: 155-165.
34 GAN X S, WU Y R, LIU P N, et al. Dynamic collision avoidance zone modeling method based on UAV emergency collision avoidance trajectory[C]∥2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). Piscataway: IEEE Press, 2020: 693-696.
35 周博, 马欣怡, 况婷妍, 等. 电磁频谱空间态势认知新范式:频谱语义和频谱行为[J]. 数据采集与处理202237(6): 1198-1207.
  ZHOU B, MA X Y, KUANG T Y, et al. New paradigm of electromagnetic spectrum space situation cognition: Spectrum semantic and spectrum behavior[J]. Journal of Data Acquisition and Processing202237(6): 1198-1207 (in Chinese).
36 胡杰, 杨鲲. 面向未来6G网络的绿色通信感知计算技术[J]. 信息通信技术与政策2022(11): 30-38.
  HU J, YANG K. Towards green integration of communications, sensing and computation in future 6G[J]. Information and Communications Technology and Policy2022(11): 30-38 (in Chinese).
37 杨艳, 李福昌, 张忠皓. 6G通感传算融合需求分析与关键技术研究[J]. 无线电通信技术202349(1): 83-88.
  YANG Y, LI F C, ZHANG Z H. Discussion on requirement and typical technology of 6G integrated communication, sensing, wireless power transfer and comupting[J]. Radio Communications Technology202349(1): 83-88 (in Chinese).
38 董超, 沈赟, 屈毓锛. 基于无人机的边缘智能计算研究综述[J]. 智能科学与技术学报20202(3): 227-239.
  DONG C, SHEN Y, QU Y B. A survey of UAV-based edge intelligent computing[J]. Chinese Journal of Intelligent Science and Technology20202(3): 227-239 (in Chinese).
39 张寒, 黄祥岳, 孟祥君, 等. 基于SDN/NFV的天地一体化网络架构研究[J]. 军事通信技术201738(2): 33-38.
  ZHANG H, HUANG X Y, MENG X J, et al. Architecture of space-terrestrial integrated network based on SDN/NFV[J]. Journal of Military Communications Technology201738(2): 33-38 (in Chinese).
40 蒋长林, 李清, 王羽, 等. 天地一体化网络关键技术研究综述[J/OL]. 软件学报,(2023-02-09)[2023-04-22]. .
  JIANG C L, LI Q, WANG Y, et al. Survey on key technologies in space-ground integrated network[J/OL]. Journal of Software, (2023-02-09)[2023-04-22]. (in Chinese).
41 朱永文, 谢华, 蒲钒, 等. 空域网格化方法及其在空管中的应用研究[J]. 航空工程进展202112(4): 12-24.
  ZHU Y W, XIE H, PU F, et al. Research of airspace gridding method and its application in air traffic management[J]. Advances in Aeronautical Science and Engineering202112(4): 12-24 (in Chinese).
42 余江帅. ADS-B技术应用风险与对策[J]. 电子技术与软件工程2019(7): 204.
  YU J S. Application risks and countermeasures of ADS-B technology[J]. Electronic Technology & Software Engineering2019(7): 204 (in Chinese).
43 ZHANG Y F, JIA Z Y, DONG C, et al. Recurrent LSTM-based UAV trajectory prediction with ADS-B information[C]∥GLOBECOM 2022 - 2022 IEEE Global Communications Conference. Piscataway: IEEE Press, 2023: 1-6.
44 YIU C Y, TAM T K, NG K K H. An ADS-B aided dynamic traffic alert for robust safety assessment in controlled airspace[C]∥2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Piscataway: IEEE Press, 2022: 319-323.
文章导航

/