基于后缘小翼的翼型动态失速主动控制试验
收稿日期: 2023-03-15
修回日期: 2023-04-17
录用日期: 2023-05-04
网络出版日期: 2023-05-06
基金资助
预研共用技术项目(50906030601);预研综合研究项目(JK20211A020092)
Test on active control of airfoil dynamic stall based on trailing edge flap
Received date: 2023-03-15
Revised date: 2023-04-17
Accepted date: 2023-05-04
Online published: 2023-05-06
Supported by
Pre-Research Foundation(50906030601);Comprehensive Research Foundation(JK20211A020092)
针对旋翼动态失速导致的非定常载荷增加和失速颤振问题,开展了基于后缘小翼的翼型动态失速主动控制试验,试验雷诺数Re=7.0×105,减缩频率k=0.097。采用动态压力测试手段,重点分析了后缘小翼不同振荡相位差、幅值、平衡迎角对翼型动态失速的影响规律。结果表明,后缘小翼能以振荡周期T的1/2为时间间隔,周期交替地改变翼型的气动性能,在后缘小翼与翼型振荡相位差为0°的条件下,实现了俯仰力矩峰值降低54.9%的控制效果,同时更大的后缘小翼振荡幅值能实现更好的非定常载荷控制效果,但过大的振荡幅值有可能导致失速颤振。后缘小翼振荡平衡迎角的引入能起到调节升力系数、气动阻尼的作用。
李国强 , 宋奎辉 , 覃晨 , 赵光银 , 吴霖鑫 , 杨永东 . 基于后缘小翼的翼型动态失速主动控制试验[J]. 航空学报, 2024 , 45(3) : 128699 -128699 . DOI: 10.7527/S1000-6893.2023.28699
Aiming at the increase of unsteady load and stall flutter caused by dynamic stall, test research focusing on the control of airfoil dynamic was carried out using an airfoil test model with trailing edge flaps. The test Reynolds number was Re = 7.0 × 105, and the reduced frequency k = 0.097. Dynamic pressure measurement was used to analyze the influence of different oscillating phase offsets, amplitudes and equilibrium angles of attack of the trailing edge flap on the airfoil during dynamic stall. The results show that the trailing edge flap with continuous sinusoidal oscillation can alternately change the aerodynamic performance of the airfoil with the time interval of 1/2 of the oscillation period. When the phase offset between the trailing edge flap and airfoil model is 0°, the peak pitching moment can reduce by 54.9% and a larger oscillation amplitude of the trailing edge flap seems to achieve a better control effect of unsteady load, but stall flutter may appear when it is too large. The oscillation equilibrium angle of attack of the trailing edge flap can change the lift coefficient and aerodynamic damping.
Key words: trailing edge flap; dynamic stall; stall flutter; aerodynamic damping; rotor
1 | LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2006. |
2 | 杨鹤森, 赵光银, 梁华, 等. 翼型动态失速影响因素及流动控制研究进展[J]. 航空学报, 2020, 41(8): 023605. |
YANG H S, ZHAO G Y, LIANG H, et al. Research progress on influence factors of airfoil dynamic stall and flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 023605 (in Chinese). | |
3 | 王清. 旋翼动态失速力学机理及气动外形优化研究[D]. 南京: 南京航空航天大学, 2017: 61-72. |
WANG Q. Study on dynamic stall mechanism and aerodynamic shape optimization of rotor[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 61-72 (in Chinese). | |
4 | 招启军, 王清, 赵国庆. 旋翼翼型定常-非定常特性综合优化设计新方法[J]. 南京航空航天大学学报, 2014, 46(3): 355-363. |
ZHAO Q J, WANG Q, ZHAO G Q. New optimization design method for rotor airfoil considering steady-unsteady characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3): 355-363 (in Chinese). | |
5 | WANG Q, ZHAO Q J, WU Q. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil[J]. Chinese Journal of Aeronautics, 2015, 28(2): 346-356. |
6 | 喻伯平, 李高华, 谢亮, 等. 基于代理模型的旋翼翼型动态失速优化设计[J]. 浙江大学学报(工学版), 2020, 54(4): 833-842. |
YU B P, LI G H, XIE L, et al. Dynamic stall optimization design of rotor airfoil based on surrogate model[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 833-842 (in Chinese). | |
7 | 招启军, 井思梦, 赵国庆, 等. 旋翼翼型动态失速机理及非定常设计研究进展[J]. 空气动力学学报, 2021, 39(6): 70-84. |
ZHAO Q J, JING S M, ZHAO G Q, et al. Review of research progress on dynamic stall mechanism and unsteady design of rotor airfoils[J]. Acta Aerodynamica Sinica, 2021, 39(6): 70-84 (in Chinese). | |
8 | 张鑫, 黄勇, 王勋年, 等. 超临界机翼介质阻挡放电等离子体流动控制[J]. 航空学报, 2016, 37(6): 1733-1742. |
ZHANG X, HUANG Y, WANG X N, et al. Flow control on a supercritical wing using dielectric barrier discharge plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1733-1742 (in Chinese). | |
9 | 李铮, 徐聪, 张健, 等. 等离子体合成射流激励器高速流场逆向喷流控制[J]. 航空学报, 2022, 43(): 228-235. |
LI Z, XU C, ZHANG J, et al. Reverse jet control of high-speed flow field in plasma synthetic jet actuator[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(Sup 2): 228-235 (in Chinese). | |
10 | 马正雪, 罗振兵, 赵爱红, 等. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报, 2022, 43(): 195-206. |
MA Z X, LUO Z B, ZHAO A H, et al. Reverse jet characteristics of plasma synthetic jet in hypersonic flow field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(Sup 2): 195-206 (in Chinese). | |
11 | 李国强, 常智强, 张鑫, 等. 翼型动态失速等离子体流动控制试验[J]. 航空学报, 2018, 39(8): 122111. |
LI G Q, CHANG Z Q, ZHANG X, et al. Experiment on flow control of airfoil dynamic stall using plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 122111 (in Chinese). | |
12 | LI G Q, ZHANG W G, JIANG Y B, et al. Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator[J]. Energy, 2019, 185: 90-101. |
13 | 宋科, 杨旭东, 乔志德. 翼型动态失速DBD等离子体流动控制的数值模拟研究[J]. 航空计算技术, 2010, 40(3): 5-8, 17. |
SONG K, YANG X D, QIAO Z D. Flow control of airfoil dynamic stall based on DBD plasma actuators[J]. Aeronautical Computing Technique, 2010, 40(3): 5-8, 17 (in Chinese). | |
14 | 许和勇, 邢世龙, 叶正寅, 等. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报, 2017, 38(6): 120799. |
XU H Y, XING S L, YE Z Y, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120799 (in Chinese). | |
15 | 卢天宇, 吴小胜. 翼型前缘变形对动态失速效应影响的数值计算[J]. 航空学报, 2014, 35(4): 986-994. |
LU T Y, WU X S. Numerical calculation effects of deforming leading edge on airfoil dynamic stall control[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 986-994 (in Chinese). | |
16 | XING S L, XU H Y, YE Z Y, et al. Dynamic stall control using inflatable leading edge[J]. International Journal of Modern Physics B, 2020, 34(14n16): 2040108. |
17 | 赵国庆, 招启军, 顾蕴松, 等. 合成射流对失速状态下翼型大分离流动控制的试验研究[J]. 力学学报, 2015, 47(2): 351-355. |
ZHAO G Q, ZHAO Q J, GU Y S, et al. Experimental investigation of synthetic jet control on large flow separation of airfoil during stall[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 351-355 (in Chinese). | |
18 | 史勇杰, 厉聪聪, 徐国华. 基于合成射流的旋翼翼型动态失速控制研究[J]. 南京航空航天大学学报, 2020, 52(2): 270-279. |
SHI Y J, LI C C, XU G H. Rotor airfoil dynamic stall control based on synthetic jet[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 270-279 (in Chinese). | |
19 | 贾天昊, 高超, 许和勇, 等. 变来流下翼型动态失速的协同射流控制数值模拟[J]. 空气动力学学报, 2023, 41(9): 59-69. |
JIA T H, GAO C, XU H Y, et al. Numerical simulation on dynamic stall control of airfoil based on co-flow jet under variable free stream[J]. Acta Aerodynamica Sinica, 2023, 41(9): 59-69 (in Chinese). | |
20 | LIU J Q, CHEN R Q, YOU Y C, et al. Numerical investigation of dynamic stall suppression of rotor airfoil via improved co-flow jet[J]. Chinese Journal of Aeronautics, 2022, 35(3): 169-184. |
21 | 王荣, 夏品奇. 多片后缘小翼对直升机旋翼桨叶动态失速及桨毂振动载荷的控制[J]. 航空学报, 2013, 34(5): 1083-1091. |
WANG R, XIA P Q. Control of helicopter rotor blade dynamic stall and hub vibration loads by multiple trailing edge flaps[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1083-1091 (in Chinese). | |
22 | 刘士明, 杨卫东, 虞志浩, 等. 后缘小翼智能旋翼减振效果影响因素分析[J]. 振动与冲击, 2017, 36(3): 138-144. |
LIU S M, YANG W D, YU Z H, et al. Influence factors analysis for smart vibration control of a rotor wing with trailing edge flaps[J]. Journal of Vibration and Shock, 2017, 36(3): 138-144 (in Chinese). | |
23 | 张柱, 黄文俊, 杨卫东. 后缘小翼型智能旋翼桨叶模型设计分析与试验研究[J]. 南京航空航天大学学报, 2011, 43(3): 296-301. |
ZHANG Z, HUANG W J, YANG W D. Design analysis and test of smart rotor blades model with trailing edge flaps[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(3): 296-301 (in Chinese). | |
24 | KRZYSIAK A, NARKIEWICZ J. Aerodynamic loads on airfoil with trailing-edge flap pitching with different frequencies[J]. Journal of Aircraft, 2006, 43(2): 407-418. |
25 | GERONTAKOS P, LEE T. Trailing-edge flap control of dynamic pitching moment[J]. AIAA Journal, 2007, 45(7): 1688-1694. |
26 | GERONTAKOS P, LEE T. Dynamic stall flow control via a trailing-edge flap[J]. AIAA Journal, 2006, 44(3): 469-480. |
27 | GERONTAKOS P, LEE T. PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection[J]. Experiments in Fluids, 2008, 45(6): 955-972. |
28 | LEE T, SU Y Y. Unsteady airfoil with a harmonically deflected trailing-edge flap[J]. Journal of Fluids and Structures, 2011, 27(8): 1411-1424. |
29 | RAIOLA M, DISCETTI S, IANIRO A, et al. Smart rotors: Dynamic-stall load control by means of an actuated flap[J]. AIAA Journal, 2018, 56(4): 1388-1401. |
30 | SAMARA F, JOHNSON D A. Deep dynamic stall and active aerodynamic modification on a S833 airfoil using pitching trailing edge flap[J]. Wind Engineering, 2021, 45(4): 884-903. |
31 | SAMARA F, JOHNSON D A. Dynamic stall on pitching cambered airfoil with phase offset trailing edge flap[J]. AIAA Journal, 2020, 58(7): 2844-2856. |
32 | 刘洋, 向锦武. 后缘襟翼对直升机旋翼翼型动态失速特性的影响[J]. 航空学报, 2013, 34(5): 1028-1035. |
LIU Y, XIANG J W. Effect of the trailing edge flap on dynamic stall performance of helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1028-1035 (in Chinese). | |
33 | 马奕扬, 招启军, 赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017, 38(3): 120312. |
MA Y Y, ZHAO Q J, ZHAO G Q. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120312 (in Chinese). | |
34 | 马奕扬, 招启军. 后缘小翼对旋翼气动特性的控制机理及参数分析[J]. 航空学报, 2018, 39(5): 121671. |
MA Y Y, ZHAO Q J. Control mechanism and parameter analyses of aerodynamic characteristics of rotor via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121671 (in Chinese). | |
35 | WU Y, DAI Y T, YANG C, et al. Effect of trailing-edge morphing on flow characteristics around a pitching airfoil[J]. AIAA Journal, 2021, 61(1): 160-173. |
36 | LIND A H. An Experimental Study of static and oscillating rotor blade sections in reverse flow[D]. Maryland: University of Maryland, 2015: 5-10. |
37 | BERTAGNOLIO F, JOHANSEN J, UGLSANG P. Wind turbine airfoil catalogue[M]. Roskilde: Ris? National Laboratory, 2001: 13-16. |
/
〈 |
|
〉 |