流体力学与飞行力学

砂纸冰对民机平尾气动特性的影响

  • 李海星 ,
  • 周峰 ,
  • 颜巍 ,
  • 白峰 ,
  • 赵克良
展开
  • 中国商用飞机有限责任公司 上海飞机设计研究院,上海 201210
.E-mail: lihaixing@comac.cc

收稿日期: 2023-03-07

  修回日期: 2023-04-10

  录用日期: 2023-04-26

  网络出版日期: 2023-05-06

基金资助

国家重点研发计划“变革性技术关键科学问题”重点专项(2020YFA0712000)

Effects of roughness ice on aerodynamic performance of civil aircraft horizontal tail

  • Haixing LI ,
  • Feng ZHOU ,
  • Wei YAN ,
  • Feng BAI ,
  • Keliang ZHAO
Expand
  • Shanghai Aircraft Design and Research Institute,COMAC,Shanghai 201210,China
E-mail: lihaixing@comac.cc

Received date: 2023-03-07

  Revised date: 2023-04-10

  Accepted date: 2023-04-26

  Online published: 2023-05-06

Supported by

Key Special Project of the National Key R & D Program of the Ministry of Since and Technology of China on “Key Scientific Issues in Transformative Technologies”(2020YFA0712000)

摘要

平尾结冰严重影响飞机的纵向操纵性及稳定性。为研究结砂纸冰对平尾气动特性的影响,采用基于某民机平尾设计的大、小模型,在低速增压风洞中开展了带砂纸冰的测力试验,分析了砂纸冰粗糙度、雷诺数、角冰粗糙度对带冰平尾气动特性的影响规律,同时总结了砂纸冰的缩比方法。结果表明:砂纸冰粗糙度增加会导致平尾气动特性逐步恶化,在飞行雷诺数条件下,当冰型粗糙度相对高度为0.2×10-3~0.6×10-3时,相比于无冰条件,最大升力系数降低0.3~0.4;雷诺数对带砂纸冰平尾气动特性的影响超过对带角冰平尾的影响,但远小于对干净平尾的影响,当带砂纸冰平尾雷诺数由3.29×106提高至13.1×106后,其最大升力系数提高0.02~0.04;角冰表面粗糙度的变化对平尾气动特性的影响较小,由粗糙度带来的升力损失远小于角冰本身所带来的影响;当砂纸冰高度远超过当地边界层厚度时,风洞试验可根据模型比例对砂纸冰粗糙度进行几何缩比,而当砂纸颗粒较小时,采用几何缩比方式获得的砂纸冰对平尾气动力影响相对较小。提出了基于边界层厚度的砂纸冰粗糙度缩比方法,该方法的适用性还需要进一步验证。

本文引用格式

李海星 , 周峰 , 颜巍 , 白峰 , 赵克良 . 砂纸冰对民机平尾气动特性的影响[J]. 航空学报, 2024 , 45(2) : 128657 -128657 . DOI: 10.7527/S1000-6893.2023.28657

Abstract

Icing on the horizontal tail seriously affects the longitudinal controllability and stability of aircraft. To study the effect of roughness ice on the aerodynamic performance of the horizontal tail, we conduct a force test in a low-speed pressured wind tunnel using two horizontal tail models designed based on a civil aircraft horizontal tail, analyze the effect laws of the ice roughness, the horizontal tail Reynold number and the horn ice roughness on the horizontal tail aerodynamic performance, and summarize the scaling method of the roughness ice used in the wind tunnel. The results show that increase in ice roughness will gradually reduce the horizontal tail aerodynamic performance, and the maximal lift coefficient will decrease by 0.3-0.4 with the ice roughness relative height within 0.2×10-3 to 0.6×10-3 under flight Reynolds number compared to the clean tail; the influence of Reynolds number on the horizontal tail aerodynamic performance with roughness exceeds that on the horizontal tail with horn ice, though is much smaller than that on the clean horizontal tail, and the maximal lift coefficient will increase by approximately 0.02-0.04 when the Reynolds number of the horizontal tail with roughness ice increases from 3.29×106 to 13.1×106; the change in the surface roughness of the horn ice has less influence on the aerodynamic performance of the horizontal tail, and the lift loss caused by the roughness is much smaller than that brought by the horn ice itself; when the height of roughness ice significantly exceeds the thickness of the local boundary layer, the roughness ice could be directly scaled according to the geometric scaling of the model, and when the height of roughness ice is smaller than the thickness of the local boundary layer, the influence of roughness ice obtained through geometric scaling on the horizontal tail is relatively small. The roughness ice scaling method based on the boundary layer thickness is proposed, and the applicability of this method needs further verification.

参考文献

1 HEINRICH A, ROSS R, ZUMWALT G, et al. Aircraft icing handbook: ADA238040, DOT/FAA/CT-88/8-2[R]. New York: Federal Aviation Administration, 1991.
2 KIND R J, POTAPCZUK M G, FEO A, et al. Experimental and computational simulation of in-flight icing phenomena[J]. Progress in Aerospace Sciences199834(5-6): 257-345.
3 杜雁霞, 李明, 桂业伟, 等. 飞机结冰热力学行为研究综述[J]. 航空学报201738(2): 520717.
  DU Y X, LI M, GUI Y W, et al. Review of thermodynamic behaviors in aircraft icing process[J]. Acta Aeronautica et Astronautica Sinica201738(2): 520717 (in Chinese).
4 LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences200137(8): 669-767.
5 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报201738(2): 520734.
  GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica201738(2): 520734 (in Chinese).
6 伍强, 徐浩军, 魏扬, 等. 结冰条件下飞机气动/运动耦合特性[J]. 航空学报202243(8): 125566.
  WU Q, XU H J, WEI Y, et al. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions[J]. Acta Aeronautica et Astronautica Sinica202243(8): 125566 (in Chinese).
7 赵宾宾, 张恒, 李杰. 翼型结冰状态复杂分离流动数值模拟综述[J]. 航空学报202344(1): 22-40.
  ZHAO B B, ZHANG H, LI J. Summary of numerical simulation of complex separated flow in airfoil icing state[J]. Acta Aeronautica et Astronautica Sinica202344(1): 22-40 (in Chinese).
8 易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报201738(2): 520711.
  YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica201738(2): 520711 (in Chinese).
9 BRAGG M, BROEREN A, BLUMENTHAL L. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences200541(5): 323-362.
10 BRAGG M B, KHODADOUST A, SPRING S A. Measurements in a leading-edge separation bubble due to a simulated airfoil ice accretion[J]. AIAA Journal199230(6): 1462-1467.
11 ADDY J H, MILLER D R, IDE R F. A Study of Large Droplet Ice Accretion in the NASA Lewis IRT at Near-freezing Conditions[C]∥ Proceedings of the International Conference on Aircraft Inflight Icing. Washington, D.C.: NASA, 1996.
12 BROEREN A, ADDY H Jr, BRAGG M. Flowfield measurements about an airfoil with leading-edge ice shapes[C]∥Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
13 POTAPCZUK M G. Aircraft icing research at NASA Glenn research center[J]. Journal of Aerospace Engineering201326(2): 260-276.
14 Federal Aviation Administration. Airplane performance and handling qualities in icing conditions: 25-121 [S]. Springfield: Federal Aviation Administration, 2005.
15 PAPADAKIS M, STRONG P, WONG J, et al. Simulation of residual and intercycle ice shapes using step ice and roughness[C]∥ Proceedings of the 4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012.
16 王新光, 毛枚良, 何琨, 等. 壁面函数在超声速湍流模拟中的应用[J]. 航空学报202243(9): 126153.
  WANG X G, MAO M L, HE K, et al. Application of wall function in supersonic turbulence simulation[J]. Acta Aeronautica et Astronautica Sinica202243(9): 126153 (in Chinese).
17 WILCOX D C. Formulation of the k?w turbulence model revisited[J]. AIAA Journal200846(11): 2823-2838.
18 杨胜华, 林贵平, 宋馨. 粗糙壁面表面传热数值计算比较[J]. 航空动力学报201126(3): 570-575.
  YANG S H, LIN G P, SONG X. Comparative study on the numerical computation of convective heat transfer over rough surfaces[J]. Journal of Aerospace Power201126(3): 570-575 (in Chinese).
19 PAPADAKIS M, GILE LAFLIN B, YOUSSEF G, et al. Aerodynamic scaling experiments with simulated ice accretions[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
20 PAPADAKIS M, CHANDRASEKHARAN R, HINSON M, et al. Effects of roughness on the aerodynamic performance of a business jet tail[C]∥ Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
21 ADDY H E, BROEREN A P, ZOECKLER J G, et al. A wind tunnel study of icing effects on a business jet airfoil[C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
22 PETTERSSON K, RIZZI A. Aerodynamic scaling to free flight conditions: Past and present[J]. Progress in Aerospace Sciences200844(4): 295-313.
23 RUDNIK, GERMAIN. Reynolds number scaling effects on the European high-lift project configurations[J]. Journal of Aircraft200946(4): 1140-1151.
24 RISIUS S, COSTANTINI M, HEIN S, et al. Experimental investigation of Mach number and pressure gradient effects on boundary layer transition in two-dimensional flow[C]∥ New Results in Numerical and Experimental Fluid Mechanics XI. Cham: Springer, 2018: 305-314.
25 LEE S, RATVASKY T P, THACKER M, BARNHART B P. Geometry and reynolds-number scaling on an iced business-jet wing[C]∥ 43rd AIAA Aerospace Science Meeting and Exhibit. Reston: AIAA, 2005.
26 BROEREN A P, ADDY H, BRAGG M, et al. Aerodynamic simulation of ice accretion on airfoils: NASA/TP—2011-216929[R]. Washington, D.C.: NASA, 2011.
27 班度·N. 帕玛迪. 飞机的性能、稳定性、动力学与控制[M]. 商重阳,左英桃,夏露,等,译. 北京: 航空工业出版社, 2013: 132-164.
  PAMADIB N . Performance, stability, dynamics and control of airplanes[M]. SHANG C Y, ZUO Y T, XIA L, et al, translated. Beijing: Aviation Industry Press, 2013: 132-164 (in Chinese).
28 FAA. FAR25 Airworthiness standards: Transport category airplane [S]. Seattle: FAA, 2007.
29 ANDERSON D N. Manual of scaling methods: NASA/CR-2004-212875[R]. Washington, D.C.: NASA, 2004.
30 张建, 李勤红, 屈飞舟, 等. 运输类飞机平尾失速敏感性及其试飞技术研究[J]. 飞行力学201129(5): 73-76.
  ZHANG J, LI Q H, QU F Z, et al. Transport aircraft tailplane stall susceptibility and flight test technique[J]. Flight Dynamics201129(5): 73-76 (in Chinese).
31 李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015: 22-25.
  LI Z F. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2015: 22-25 (in Chinese).
32 王继明, 刘亦鹏. 民机风洞试验半模垫板高度对气动特性的影响[J]. 航空学报201738(5): 120429.
  WANG J M, LIU Y P. Effects of half model peniche height on civil aircraft aerodynamic characteristics in wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica201738(5): 120429 (in Chinese).
33 刘义信,刘国强,刘晓辉,等. 航空航天器低速风洞测力试验方法: [S]. 北京: 中国人民解放军总装备部,2002.
  LIU Y X, LIU G Q, LIU X H, et al. Test method for aerodynamic force measurement of aero-space craft model in low speed wind tunnel: [S]. Beijing: The General Reserve Department of PLA, 2002 (in Chinese).
34 KERHO M F. Effect of large distributed roughness near an airfoil leading edge on boundary-layer development and transition[D]. Urbana: University of Illinois, 1995.
35 CUMMINGS M J. Airfoil boundary-layer transition due to large isolated 3-D roughness elements in a favorable pressure gradient[D]. Urbana: University of Illinois, 1995.
36 小约翰·D . 安德森. 空气动力学基础[M]. 杨永,宋文萍,张正科,等,译. 北京:航空工业出版社,2014: 1020-1021.
  ANDERSON J D. Fundamentals of aerodynamics[M]. YANG Y, SONG W P, ZHANG Z K, et al, translated. Beijing: Aviation Industry Press, 2014: 1020-1021 (in Chinese).
文章导航

/