基于多源异构信息的航空发动机转子参数校准与可靠性分析
收稿日期: 2023-02-17
修回日期: 2023-03-20
录用日期: 2023-05-04
网络出版日期: 2023-05-06
基金资助
国家自然科学基金(72271025);广东省基础与应用基础研究基金(2023A1515011532);航空科学基金(2018ZC74001)
Parameter calibration and reliability analysis of an aero-engine rotor based on multi-source heterogeneous information
Received date: 2023-02-17
Revised date: 2023-03-20
Accepted date: 2023-05-04
Online published: 2023-05-06
Supported by
National Natural Science Foundation of China(72271025);Guangdong Basic and Applied Basic Research Foundation(2023A1515011532);Aeronautical Science Foundation of China(2018ZC74001)
复杂系统可靠性分析结果的准确性与输入参数精度密切相关。针对包含多源不确定信息的可靠性分析问题,提出了基于贝叶斯最大熵的随机模型修正与参数校准方法。该方法将类型统计信息(例如矩信息、可靠度)转换为约束条件,进而利用不确定性优化求解传统参数估计问题。考虑混合不确定性,引入Wasserstein距离构建似然函数,并利用近似算法提高计算效率。该方法通过增加“熵项”的方式拓展了经典贝叶斯推理的适用范围,可处理多源异构数据与混合不确定性问题。针对多部件航空发动机转子系统,建立了基于survival signature的多态系统可靠性模型,并应用上述方法开展可靠性分析,结果显示本方法较传统方法具有更高精度与更强的稳健性。
杨乐昌 , 汪晨星 . 基于多源异构信息的航空发动机转子参数校准与可靠性分析[J]. 航空学报, 2023 , 44(23) : 228575 -228575 . DOI: 10.7527/S1000-6893.2023.28575
The accuracy of reliability analysis results of complex systems is closely related to the accuracy of input parameters. A stochastic model correction and parameter calibration method based on Bayesian maximum entropy is proposed to solve the reliability analysis problem containing multi-source uncertain information. By converting multi-source statistical information (such as moment information and reliability) into constraint conditions, this method transforms parameter estimation into uncertainty optimization problem. Further considering the mixed uncertainty, Wasserstein distance is introduced to construct the likelihood function, and the approximation algorithm is used to improve the computational efficiency. This method extends the application scope of classical Bayesian inference by adding "entropy term" and can deal with multi-source heterogeneous data and mixed uncertainty problems. A multi-state system reliability model based on survival signature was established for a multi-component aero-engine rotor system, and the reliability analysis was carried out by using the above method. Through comparative analysis, it was verified that the proposed method has higher accuracy and stronger robustness than the traditional method.
1 | 游令非, 张建国, 周霜, 等. 航空发动机限寿件疲劳可靠度计算新方法[J]. 航空学报, 2019, 40(12): 223228. |
YOU L F, ZHANG J G, ZHOU S, et al. A new method for fatigue reliability calculation of aero-engine limited life parts[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12): 223228 (in Chinese). | |
2 | 陶春虎. 航空发动机转动部件的失效与预防[M]. 北京: 国防工业出版社, 2000. |
TAO C H. Failure analysis and prevention for rotor in aero-engine[M]. Beijing: National Defense Industry Press, 2000 (in Chinese). | |
3 | GUO J, LI Z J, LI M Y. A review on prognostics methods for engineering systems[J]. IEEE Transactions on Reliability, 2020, 69(3): 1110-1129. |
4 | BI S F, BROGGI M, BEER M. The role of the Bhattacharyya distance in stochastic model updating[J]. Mechanical Systems and Signal Processing, 2019, 117: 437-452. |
5 | CHING J, BECK J L, PORTER K A. Bayesian state and parameter estimation of uncertain dynamical systems[J]. Probabilistic Engineering Mechanics, 2006, 21(1): 81-96. |
6 | JAYNES E T. Information theory and statistical mechanics[J]. Physical Review, 1957, 106(4): 620-630. |
7 | JAYNES E T. Prior probabilities[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(3): 227-241. |
8 | GIFFIN A, CATICHA A, KNUTH K H, et al. Updating probabilities with data and moments[C]∥AIP Conference Proceedings. Saratoga Springs :AIP, 2007:74-84. |
9 | GIFFIN A. Maximum entropy: the universal method for inference[EB/OL]. arXiv Preprint:arXiv:,2009. |
10 | GIFFIN A. From physics to economics: an econometric example using maximum relative entropy[J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(8): 1610-1620. |
11 | WANG Y H, LIU Y M. Bayesian entropy network for fusion of different types of information[J]. Reliability Engineering & System Safety, 2020, 195: 106747. |
12 | ZHOU D Q, HE J J, DU Y M, et al. Probabilistic information fusion with point, moment and interval data in reliability assessment[J]. Reliability Engineering & System Safety, 2021, 213: 107790. |
13 | PRITCHARD J K, SEIELSTAD M T, PEREZ-LEZAUN A, et al. Population growth of human Y chromosomes: a study of Y chromosome microsatellites[J]. Molecular Biology and Evolution, 1999, 16(12): 1791-1798. |
14 | ERYILMAZ S, TUNCEL A. Generalizing the survival signature to unrepairable homogeneous multi-state systems[J]. Naval Research Logistics (NRL), 2016, 63(8): 593-599. |
15 | COOLEN F P, COOLEN-MATURI T, AL-NEFAIEE A H. Nonparametric predictive inference for system reliability using the survival signature[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2014, 228(5): 437-448. |
16 | COOLEN F P A, COOLEN-MATURI T. The structure function for system reliability as predictive (imprecise) probability[J]. Reliability Engineering & System Safety, 2016, 154: 180-187. |
17 | COOLEN-MATURI T, COOLEN F P A, BALAKRISHNAN N. The joint survival signature of coherent systems with shared components[J]. Reliability Engineering & System Safety, 2021, 207: 107350. |
18 | BEHRENSDORF J, REGENHARDT T E, BROGGI M, et al. Numerically efficient computation of the survival signature for the reliability analysis of large networks[J]. Reliability Engineering & System Safety, 2021, 216: 107935. |
19 | PATELLI E, FENG G, COOLEN F P A, et al. Simulation methods for system reliability using the survival signature[J]. Reliability Engineering & System Safety, 2017, 167: 327-337. |
20 | 崔利杰, 陈浩然, 任博, 等. 混合不确定条件下航空不安全事件量化分析方法[J]. 国防科技大学学报, 2020, 42(2): 92-97. |
CUI L J, CHEN H R, REN B, et al. Quantitative analysis method of aviation unsafe events under mixed uncertain conditions[J]. Journal of National University of Defense Technology, 2020, 42(2): 92-97 (in Chinese). | |
21 | 李泽贤, 马梦颖, 武健辉, 等. 考虑随机和认知混合不确定性的CFD模型修正方法 [J/OL]. 北京航空航天大学学报. (2022-10-09)[2023-02-13].. |
LI Z X, MA M Y, WU J H, et al. CFD model modification method considering stochastic and cognitive mixed uncertainties [J/OL]. Journal of Beijing University of Aeronautics and Astronsutics,(2022-10-09)[2023-02-13]. (in Chinese). | |
22 | YANG L C, BI S F, FAES M G R, et al. Bayesian inversion for imprecise probabilistic models using a novel entropy-based uncertainty quantification metric[J]. Mechanical Systems and Signal Processing, 2022, 162: 107954. |
23 | CHING J, CHEN Y C. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of Engineering Mechanics, 2007, 133(7): 816-832. |
24 | CZAPLA D, HORBACZ K, WOJEWóDKA-?CI??KO H. Exponential ergodicity in the bounded-Lipschitz distance for some piecewise-deterministic Markov processes with random switching between flows[J]. Nonlinear Analysis, 2022, 215: 112678. |
25 | ZHU S P, HUANG H Z, HE L P, et al. A generalized energy-based fatigue-creep damage parameter for life prediction of turbine disk alloys[J]. Engineering Fracture Mechanics, 2012, 90: 89-100. |
26 | ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953, 24(8): 981-988. |
/
〈 |
|
〉 |