航空发动机整机振动辨识与抑制专栏

转轴-轮盘-裂纹叶片耦合系统的叶尖振动特性

  • 吴志渊 ,
  • 赵林川 ,
  • 颜格 ,
  • 胡海峰 ,
  • 杨志勃 ,
  • 张文明
展开
  • 1.上海交通大学 机械系统与振动国家重点实验室,上海 200240
    2.国防科技大学 装备综合保障国防科技重点实验室,长沙 410075
    3.西安交通大学 机械制造系统工程国家重点实验室,西安 710049
.E-mail: wenmingz@sjtu.edu.cn

收稿日期: 2022-12-01

  修回日期: 2023-02-13

  录用日期: 2023-05-04

  网络出版日期: 2023-05-06

基金资助

国家科技重大专项(2017-V-0009);国家自然科学基金(12032015)

Vibration characteristics of blade tip in a shaft⁃disk⁃cracked⁃blade coupling system

  • Zhiyuan WU ,
  • Linchuan ZHAO ,
  • Ge YAN ,
  • Haifeng HU ,
  • Zhibo YANG ,
  • Wenming ZHANG
Expand
  • 1.State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China
    2.Science and Technology on Integrated Logistics Support Laboratory,National University of Defense Technology,Changsha 410075,China
    3.State Key Laboratory for Manufacturing Systems Engineering,Xi’an Jiaotong University,Xi’an 710049,China

Received date: 2022-12-01

  Revised date: 2023-02-13

  Accepted date: 2023-05-04

  Online published: 2023-05-06

Supported by

National Science and Technology Major Project(2017-V-0009);National Natural Science Foundation of China(12032015)

摘要

航空发动机叶片在极端恶劣环境中工作,容易产生裂纹进而缩短叶片寿命,严重影响航空发动机的安全运行。以转轴-轮盘-裂纹叶片耦合系统为研究对象,采用有限元、假设模态混合的建模策略,利用有限元模拟转轴,基于Kirchhoff板理论、Timoshenko梁理论模拟轮盘、旋转叶片,并根据时变的释放应变能确定呼吸裂纹导致的时变损失刚度,建立了相应的动力学模型;通过对比耦合系统的固有特性和振动响应验证了提出方法的正确性;剖析了重力载荷、转子不平衡力、气动载荷对叶尖振动特性的影响,并研究了不同无量纲裂纹深度和裂纹位置对叶尖振动特性的影响。研究结果表明:健康叶片中,重力载荷会导致叶片产生振动,转子不平衡力会导致叶片发生静变形;在旋转状态下,裂纹叶片导致叶尖弯曲位移产生偏移量;在气动载荷作用下,呼吸裂纹导致叶片发生非线性振动;常值分量与转频幅值比、常值分量与气动激励频率幅值比是评价呼吸裂纹的有效指标。本文的建模方法和分析结论可为航空发动机叶片裂纹故障诊断提供了一定的理论依据。

本文引用格式

吴志渊 , 赵林川 , 颜格 , 胡海峰 , 杨志勃 , 张文明 . 转轴-轮盘-裂纹叶片耦合系统的叶尖振动特性[J]. 航空学报, 2024 , 45(4) : 628346 -628346 . DOI: 10.7527/S1000-6893.2023.28346

Abstract

Aero-engine blades, subjected to extreme environmental conditions, are susceptible to crack development, which shortens blade life and seriously affects the safe operation of aero-engine. This paper focuses on the shaft-disk-cracked-blade coupling system which is modeled using the mixed strategy of the finite element method and the assumed mode method. The shaft is simulated by finite element method, while the disk and blade are simulated by Kirchhoff plate theory and Timoshenko beam theory. A dynamic model is built based on time-varying loss stiffness caused by the breathing crack which is determined by the time-varying release strain energy. The correctness of the proposed method is confirmed by comparing the natural characteristics and vibration responses of the coupling system. The influences of gravity load, rotor unbalance force and aerodynamic load on vibration characteristics of the blade tip are analyzed, and the impact of different dimensionless crack depths and crack locations on the vibration characteristics of the blade tip are investigated. The research results show that: in a healthy blade, the gravity load can cause the blade to vibrate, and the unbalanced force can induce the static deformation of the blade; under rotation, the cracked blade leads to the bending displacement of the blade tip, which produces an offset, while under the action of aerodynamic load, the breathing crack results in nonlinear vibration of the blade; the amplitude ratio of the constant component to the rotational frequency and the amplitude ratio of the constant component to the aerodynamic excitation frequency are valuable indicators for assessing breathing crack. The modeling method and analysis conclusions in this paper can provide a specific theoretical basis for the fault diagnosis of aero-engine blade crack.

参考文献

1 WANG W M, ZHANG X L, HU D F, et al. A novel none once per revolution blade tip timing based blade vibration parameters identification method[J]. Chinese Journal of Aeronautics202033(7): 1953-1968.
2 ZHANG X D, XIONG Y W, HUANG X, et al. Dynamic characteristics analysis of 3D blade tip clearance for turbine blades with typical cracks[J]. International Journal of Aerospace Engineering20222022: 1-17.
3 ZENG J, CHEN K K, MA H, et al. Vibration response analysis of a cracked rotating compressor blade during Run-up process[J]. Mechanical Systems and Signal Processing2019118: 568-583.
4 CHEN Z S, SHENG H, XIA Y M, et al. A comprehensive review on blade tip timing-based health monitoring: status and future[J]. Mechanical Systems and Signal Processing2021149: 107330.
5 YANG L H, MAO Z, WU S M, et al. Steady-state coupling vibration analysis of shaft-disk-blade system with blade crack[J]. Nonlinear Dynamics2021105(1): 61-98.
6 CHIU Y J, HUANG S C. The influence of a cracked blade on rotor’s free vibration[J]. Journal of Vibration and Acoustics2008130(5): 1.
7 刘美茹, 朱靖, 梁恩波, 等. 基于叶尖定时的航空发动机压气机叶片振动测量[J]. 航空动力学报201934(9): 1895-1904.
  LIU M R, ZHU J, LIANG E B, et al. Vibration measurement on compressor rotor blades of aero-engine based on tip-timing[J]. Journal of Aerospace Power201934(9): 1895-1904 (in Chinese).
8 刘美茹, 郜伟强, 范毅, 等. 叶尖定时技术在转子叶片故障排除中的应用[J]. 航空动力学报202237(12): 2818-2829.
  LIU M R, GAO W Q, FAN Y, et al. Application of blade tip timing technology in rotor blade fault elimination[J]. Journal of Aerospace Power202237(12): 2818-2829 (in Chinese).
9 XU H L, CHEN Z S, XIONG Y P, et al. Nonlinear dynamic behaviors of rotated blades with small breathing cracks based on vibration power flow analysis[J]. Shock and Vibration20162016: 1-11.
10 XIE J S, ZI Y Y, ZHANG M Q, et al. A novel vibration modeling method for a rotating blade with breathing cracks[J]. Science China Technological Sciences201962(2): 333-348.
11 YANG L H, YANG Z S, MAO Z, et al. Dynamic characteristic analysis of rotating blade with transverse crack—Part I: Modeling, modification, and validation[J]. Journal of Vibration and Acoustics2021143(5): 051010.
12 LIU C, JIANG D X. Crack modeling of rotating blades with cracked hexahedral finite element method[J]. Mechanical Systems and Signal Processing201446(2): 406-423.
13 ZHAO C G, ZENG J, MA H, et al. Dynamic analysis of cracked rotating blade using cracked beam element[J]. Results in Physics202019: 103360.
14 KUANG J H, HUANG B W. The effect of blade crack on mode localization in rotating bladed disks[J]. Journal of Sound and Vibration1999227(1): 85-103.
15 HUANG B W, KUNG H K, KUANG J H. Stability in a twisted periodic blade system with cracks[J]. AIAA Journal200644(7): 1436-1444.
16 HUANG B W. Effect of number of blades and distribution of cracks on vibration localization in a cracked pre-twisted blade system[J]. International Journal of Mechanical Sciences200648(1): 1-10.
17 JUNG C, SAITO A, EPUREANU B I. Detection of cracks in mistuned bladed disks using reduced-order models and vibration data[J]. Journal of Vibration and Acoustics2012134(6): 061010.
18 MA H, LU Y, WU Z Y, et al. A new dynamic model of rotor-blade systems[J]. Journal of Sound and Vibration2015357: 168-194.
19 SHE H X, LI C F, TANG Q S, et al. The investigation of the coupled vibration in a flexible-disk blades system considering the influence of shaft bending vibration[J]. Mechanical Systems and Signal Processing2018111: 545-569.
20 MA H, YIN F L, WU Z Y, et al. Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing[J]. Nonlinear Dynamics201684(3): 1225-1258.
21 YANG T R, MA H, QIN Z Y, et al. Coupling vibration characteristics of the shaft-disk-drum rotor system with bolted joints[J]. Mechanical Systems and Signal Processing2022169: 108747.
22 吴志渊, 闫寒, 吴林潮, 等. 旋转裂纹叶片-弹性轮盘耦合系统振动特性[J]. 航空学报202243(9): 625442.
  WU Z Y, YAN H, WU L C, et al. Vibration characteristics of rotating cracked-blade-flexible-disk coupling system[J]. Acta Aeronautica et Astronautica Sinica202243(9): 625442 (in Chinese).
23 ZHAO S N, ZHANG X N, ZHANG S G, et al. A unified modeling approach for rotating flexible shaft-disk systems with general boundary and coupling conditions[J]. International Journal of Mechanical Sciences2022218: 107073.
24 WU Z Y, YAN H, ZHAO L C, et al. Axial-bending coupling vibration characteristics of a rotating blade with breathing crack[J]. Mechanical Systems and Signal Processing2023182: 109547.
25 DADO M H F, ABUZEID O. Coupled transverse and axial vibratory behaviour of cracked beam with end mass and rotary inertia[J]. Journal of Sound and Vibration2003261(4): 675-696.
26 WU M C, HUANG S C. On the vibration of a cracked rotating blade[J]. Shock and Vibration19985(5-6): 317-323.
27 HOU Y H, CAO S Q, KANG Y H, et al. Dynamics analysis of bending–torsional coupling characteristic frequencies in dual-rotor systems[J]. AIAA Journal202260(10): 6020-6035.
28 MOHAMED M E, BONELLO P. The efficient inclusion of rotation-induced inertia effects in a shaft-blisk assembly model using zero-speed modes[J]. Journal of Sound and Vibration2020479: 115357.
29 WU Z Y, YAN H, ZHAO L C, et al. Influences of blade crack on the coupling characteristics in a bladed disk with elastic support[J]. Aerospace Science and Technology2023133: 108135.
30 SHE H X, LI C F. Analytical interpretation and numerical simulation on the dynamic coupling of a flexible cyclic blades-disk-shaft system[J]. Applied Mathematical Modelling2022112: 726-748.
31 CHEN S Y, YANG Y M, HU H F, et al. Blind interpolation for multi-frequency blade tip timing signals[J]. Mechanical Systems and Signal Processing2022172: 108946.
文章导航

/