航空发动机篦齿⁃橡胶涂层机匣碰摩实验
收稿日期: 2022-12-02
修回日期: 2023-02-14
录用日期: 2023-04-10
网络出版日期: 2023-04-28
基金资助
国家科技重大专项(2017-IV-0001-0038);国家自然科学基金(52205128)
Rubbing experimental study on labyrinth and rubber⁃coated case for aero⁃engines
Received date: 2022-12-02
Revised date: 2023-02-14
Accepted date: 2023-04-10
Online published: 2023-04-28
Supported by
National Science and Technology Major Project of China(2017-IV-0001-0038);National Natural Science Foundation of China(52205128)
马瑞贤 , 王鑫 , 王开明 , 李斌 , 廖明夫 , 王四季 . 航空发动机篦齿⁃橡胶涂层机匣碰摩实验[J]. 航空学报, 2024 , 45(4) : 628350 -628350 . DOI: 10.7527/S1000-6893.2023.28350
To verify the rotor-stator vibration characteristics induced by rubbing between the labyrinth and rubber-coated case for aero-engine booster, a local rubbing experimental device was designed for rotor-stator. The time-frequency domain variations of rotor vibrational displacement, the vibration acceleration of the case and the base, the strain of the case and the elastic support, as well as case temperature were measured and analyzed systematically at various rubbing speeds. The results show that the rotor-stator rubbing features are significantly affected by the wear and fusion of the rubber coating, which results in a variational contacting status between rotor and stator during the rubbing process. The rubbing shows features of high energy, strong transient state and short-time self-separation. A typical period of abrupt change and recovery in short time can be observed for the monitored signals during the rubbing. The rotor-stator coupling vibration is excited by rubbing, inducing resonance at natural frequencies of the rotor and the stator. In the meanwhile, the modulation vibration between the casing natural frequency and rotor frequency is captured.
1 | 王四季, 廖明夫, 蒋云帆, 等. 对转双转子局部碰摩故障实验[J]. 推进技术, 2013, 34(1): 31-36. |
WANG S J, LIAO M F, JIANG Y F, et al. Experimental study on local rub-impact fault of counter-rotating dual-rotor[J]. Journal of Propulsion Technology, 2013, 34(1): 31-36 (in Chinese). | |
2 | 王俨剀, 王理, 廖明夫, 等. 双转子发动机转子-机匣碰摩振动特征研究[J]. 机械科学与技术, 2014, 33(4): 614-620. |
WANG Y K, WANG L, LIAO M F, et al. Exploring vibration characteristics of dual-rotor engine’s rotor-to-case rub-impact[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(4): 614-620 (in Chinese). | |
3 | CHU F L, LU W X. Experimental observation of nonlinear vibrations in a rub-impact rotor system[J]. Journal of Sound and Vibration, 2005, 283(3-5): 621-643. |
4 | MA H, SHI C Y, HAN Q K, et al. Fixed-point rubbing fault characteristic analysis of a rotor system based on contact theory[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 137-153. |
5 | 马辉, 杨健, 宋溶泽, 等. 转子系统碰摩故障实验研究进展与展望[J]. 振动与冲击, 2014, 33(6): 1-12. |
MA H, YANG J, SONG R Z, et al. Review and prospect on the research of rub-impact experiment of rotor systems[J]. Journal of Vibration and Shock, 2014, 33(6): 1-12 (in Chinese). | |
6 | SUN C Z, CHEN Y S, HOU L. Steady-state response characteristics of a dual-rotor system induced by rub-impact[J]. Nonlinear Dynamics, 2016, 86(1): 91-105. |
7 | 侯理臻, 廖明夫, 王四季, 等. 航空发动机转子不平衡下转静碰摩试验研究[J]. 振动与冲击, 2019, 38(22): 14-20, 43. |
HOU L Z, LIAO M F, WANG S J, et al. Experimental study on the aero-engine rotor-stator rubbing in imbalance[J]. Journal of Vibration and Shock, 2019, 38(22): 14-20, 43 (in Chinese). | |
8 | 刘棣, 李超, 杨海, 等. 突加不平衡激励碰摩转子反向涡动分析[J]. 航空动力学报, 2021, 36(7): 1509-1519. |
LIU D, LI C, YANG H, et al. Analysis of backward whirl for rubbing rotor caused by excitation of sudden unbalance[J]. Journal of Aerospace Power, 2021, 36(7): 1509-1519 (in Chinese). | |
9 | 曾振坤, 张大义, 范雨, 等. 碰摩引发的增压级转静耦合振动特性分析方法[J]. 航空动力学报, 2022, 37(10): 2233-2241. |
ZENG Z K, ZHANG D Y, FAN Y, et al. Analysis method of rotor-static coupling vibration characteristics of booster stage caused by rub-impact[J]. Journal of Aerospace Power, 2022, 37(10): 2233-2241 (in Chinese). | |
10 | 韩金昌, 左彦飞, 冯坤. 周期性碰摩激励作用下薄壁机匣支撑系统响应机理[J]. 航空动力学报, 2021, 36(1): 167-175. |
HAN J C, ZUO Y F, FENG K. Response mechanism of thin-walled casing support system under periodic rubbing exciation[J]. Journal of Aerospace Power, 2021, 36(1): 167-175 (in Chinese). | |
11 | 于明月, 陈果, 刘永泉, 等. 基于机匣应变信号的航空发动机转静碰摩部位识别[J]. 航空学报, 2013, 34(6): 1474-1484. |
YU M Y, CHEN G, LIU Y Q, et al. Aero-engine rotor-stator rubbing position identification based on casing strain signals[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1474-1484 (in Chinese). | |
12 | 秦海勤, 张耀涛, 徐可君. 双转子-支承-机匣耦合系统碰摩振动响应分析及试验验证[J]. 机械工程学报, 2019, 55(19): 75-83. |
QIN H Q, ZHANG Y T, XU K J. Rubbing vibration response theoretical analysis and experimental verification for a double rotor support casing system[J]. Journal of Mechanical Engineering, 2019, 55(19): 75-83 (in Chinese). | |
13 | 王南飞, 蒋东翔, 韩特, 等. 双转子系统动静碰摩动力学研究与基于振动加速度的实验验证[J]. 振动与冲击, 2017, 36(14): 71-76, 97. |
WANG N F, JIANG D X, HAN T, et al. Dynamics of rub-impact of dual-rotor systems and the experimental verification based on vibration accelerations measurement[J]. Journal of Vibration and Shock, 2017, 36(14): 71-76, 97 (in Chinese). | |
14 | 张俊红, 王杰, 鲁鑫, 等. 考虑封严涂层的航空发动机叶片碰摩过程[J]. 浙江大学学报(工学版), 2018, 52(5): 980-987. |
ZHANG J H, WANG J, LU X, et al. Rubbing process of aero-engine blades considering seal coating[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(5): 980-987 (in Chinese). | |
15 | BATAILLY A, LEGRAND M. Unilateral contact induced blade/casing vibratory interactions in impellers: analysis for flexible casings with friction and abradable coating[J]. Journal of Sound and Vibration, 2015, 348: 344-364. |
16 | YANG Y, CAO D Q, XU Y Q. Rubbing analysis of a nonlinear rotor system with surface coatings[J]. International Journal of Non-Linear Mechanics, 2016, 84: 105-115. |
17 | MILLECAMPS A, BRUNEL J F, DUFRE′NOY P, et al. Influence of thermal effects during blade-casing contact experiments[C]∥ Proceedings of ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2010: 855-862. |
18 | NYSSEN F, BATAILLY A. Sensitivity analysis of rotor/stator interactions accounting for wear and thermal effects within low- and high-pressure compressor stages[J]. Coatings, 2020, 10(1): 74. |
19 | AGRAPART Q, NYSSEN F, LAVAZEC D, et al. Multi-physics numerical simulation of an experimentally predicted rubbing event in aircraft engines[J]. Journal of Sound and Vibration, 2019, 460: 114869. |
20 | STRINGER J, MARSHALL M B. High speed wear testing of an abradable coating[J]. Wear, 2012, 294-295: 257-263. |
21 | PADOVA C, DUNN M G, BARTON J, et al. Casing treatment and blade-tip configuration effects on controlled gas turbine blade tip/shroud rubs at engine conditions[J]. Journal of Turbomachinery, 2011, 133(1): 1. |
22 | BERTHOUL B, BATAILLY A, STAINIER L, et al. Phenomenological modeling of abradable wear in turbomachines[J]. Mechanical Systems and Signal Processing, 2018, 98: 770-785. |
/
〈 |
|
〉 |