考虑侵蚀效应的冰晶/混合相结冰计算方法
收稿日期: 2023-02-24
修回日期: 2023-03-20
录用日期: 2023-04-17
网络出版日期: 2023-04-21
基金资助
国家自然科学基金重点项目(12132019);国家科技重大专项(J2019-III-0010-0054);国家自然科学面上项目(12172372)
Calculation method for ice crystal/mixed phase icing considering ice crystal erosion
Received date: 2023-02-24
Revised date: 2023-03-20
Accepted date: 2023-04-17
Online published: 2023-04-21
Supported by
Key Program of National Natural Science Foundation of China(12132019);National Science and Technology Major Project(J2019-III-0010-0054);General Program of National Science Foundation of China(12172372)
航空发动机内部摄入冰晶并发生结冰,是造成航空发动机损伤和动力损失的重要原因。开展冰晶/混合相结冰计算方法研究,系统分析冰晶结冰物理模型是研究航空发动机内部结冰过程,保证飞行适航安全的主要途径之一。围绕冰晶/混合相结冰计算,建立了拉格朗日框架下,涵盖冰晶运动-传热传质、冰晶粘附、混合相结冰相变、冰晶侵蚀等多个物理现象的完整冰晶/混合相结冰数值计算方法,基于NNWICE结冰平台开发了相应计算程序。以NACA0012翼型及二维冠状圆柱为对象,模拟了不同来流条件及云雾条件下所结冰形,并与试验结果对比,验证了所建立计算方法的有效性,分析得到了来流温度与液态水含量/总水含量在混合相条件和冰晶覆水条件下对结冰的影响规律;对比有无侵蚀效应计算结果,验证了冰晶侵蚀效应对结冰的重要影响。相关工作为进一步发展航空发动机结冰数值模拟计算奠定了工作基础。
马乙楗 , 柴得林 , 易贤 , 屈经国 , 王强 . 考虑侵蚀效应的冰晶/混合相结冰计算方法[J]. 航空学报, 2023 , 44(15) : 528609 -528609 . DOI: 10.7527/S1000-6893.2023.28609
The ingestion of ice crystals and icing inside the aero engine is a significant cause of aero engine damage and power loss. Researching on the calculation method for ice crystal/mixed phase icing, and systematically analyzing the physical model of ice crystal icing are among the major approaches to the study on the internal icing process of aero engines to ensure the safety of flight airworthiness. Focusing on the calculation of ice crystal/mixed phase icing, we establish, under the Lagrange framework, a complete numerical calculation method for ice crystal/mixed phase icing, covering multiple physical phenomena such as ice crystal motion-heat and mass transfer, ice crystal adhesion, mixed phase icing phase transition, and ice crystal erosion. The corresponding calculation program is then developed based on the NNWICE icing platform. We take the NACA0012 airfoil and two-dimensional coronal cylinder as the research objects, and simulate the icing shape under different flow conditions and cloud conditions. The effectiveness of the established calculation method is verified by comparison with the experimental results, and the influence of flow temperature and liquid water content/total water content on icing under mixed phase conditions and ice crystal water cover conditions analyzed. Comparison of the calculation results with and without the erosion effect verifies the significant influence of the ice crystal erosion effect on icing. This work lays a working foundation for further development of numerical simulation calculation of aero engine icing.
1 | OLIVER M. Ice crystal icing engine testing in the NASA Glenn research center’s propulsion systems laboratory: Altitude investigation[J]. SAE International Journal of Aerospace, 2015, 8(1): 33-37. |
2 | 袁庆浩, 樊江, 白广忱. 航空发动机内部冰晶结冰研究综述[J]. 推进技术, 2018, 39(12): 2641-2650. |
YUAN Q H, FAN J, BAI G C. Review on ice crystal icing in aeroengine[J]. Journal of Propulsion Technology, 2018, 39(12): 2641-2650 (in Chinese). | |
3 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(): 726371. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 726371 (in Chinese). | |
4 | 沈浩, 韩冰冰, 张丽芬. 航空发动机中冰晶结冰的研究进展[J]. 实验流体力学, 2020, 34(6): 1-7. |
SHEN H, HAN B B, ZHANG L F. Research progress of the ice crystal icing in aero-engine[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 1-7 (in Chinese). | |
5 | 黄平, 卜雪琴, 刘一鸣, 等. 混合相/冰晶条件下的结冰研究综述[J]. 航空学报, 2022, 43(5): 025178. |
HUANG P, BU X Q, LIU Y M, et al. Mixed phase/glaciated ice accretion: Review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 025178 (in Chinese). | |
6 | 崔静, 张杭, 翟巍, 等. 飞秒脉冲激光诱导TC4微结构表面抑冰特性实验[J]. 航空学报, 2021, 42(6): 424032. |
CUI J, ZHANG H, ZHAI W, et al. Experiment on ice suppression characteristics of TC4microstructure surface induced by femtosecond pulse laser[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 424032 (in Chinese). | |
7 | 伍强, 徐浩军, 裴彬彬, 等. 基于吸引域与二元极值理论的结冰飞机飞行风险量化评估[J]. 航空学报, 2022, 43(5): 125137. |
WU Q, XU H J, PEI B B, et al. Quantitative evaluation of flight risk of icing aircraft based on theory of region of attraction and binary extreme value[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 125137 (in Chinese). | |
8 | 伍强, 徐浩军, 魏扬, 等. 结冰条件下飞机气动/运动耦合特性[J]. 航空学报, 2022, 43(8): 125566. |
WU Q, XU H J, WEI Y, et al. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125566 (in Chinese). | |
9 | NORDE E, VAN DER WEIDE E T A, HOEIJMAKERS H W M. Eulerian method for ice crystal icing[J]. AIAA Journal, 2017, 56(1): 222-234. |
10 | TRONTIN P, BLANCHARD G, VILLEDIEU P. A comprehensive numerical model for mixed-phase and glaciated icing conditions[C]∥8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016. |
11 | TRONTIN P, VILLEDIEU P. A comprehensive accretion model for glaciated icing conditions[J]. International Journal of Multiphase Flow, 2018, 108: 105-123. |
12 | MASON J, STRAPP W, CHOW P. The ice particle threat to engines in flight[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006. |
13 | AL-KHALIL K, IRANI E, MILLER D. Mixed phase icing simulation and testing at the ccx icing wind tunnel[C]∥41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003. |
14 | ZHANG L F, LIU Z X, ZHANG M H. Numerical simulation of ice accretion under mixed-phase conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2016, 230(13): 2473-2483. |
15 | VILLEDIEU P, TRONTIN P, CHAUVIN R. Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite[C]∥6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2014. |
16 | HAUK T, ROISMAN I V, TROPEA C D. Investigation of the melting behaviour of ice particles in an acoustic levitator[C]∥11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston: AIAA. |
17 | YAN S, PALACIOS J. Experimental measurement of the percentage of partial melting in a single ice crystal[C]∥8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA. |
18 | MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42. |
19 | WRIGHT W, JORGENSON P, VERES J. Mixed phase modeling in GlennICE with application to engine icing[C]∥AIAA Atmospheric and Space Environments Conference. Reston: AIAA. |
20 | BENNANI L, VILLEDIEU P, SALAUN M, et al. Numerical simulation and modeling of ice shedding: process initiation[J]. Computers & Structures, 2014, 142: 15-27. |
21 | KINTEA D M, ROISMAN I V, TROPEA C. Transport processes in a wet granular ice layer: model for ice accretion and shedding[J]. International Journal of Heat and Mass Transfer, 2016, 97: 461-472. |
22 | CHARTON V, SENONER J M, TRONTIN P, et al. Semi-empirical erosion model with particle size and liquid water content effects for ice crystal icing simulations[C]∥AIAA Aviation 2020 Forum. Reston: AIAA. |
23 | HUTCHINGS I M. A model for the erosion of metals by spherical particles at normal incidence[J]. Wear, 1981, 70(3): 269-281. |
24 | HUANG C K, CHIOVELLI S, MINEV P, et al. A comprehensive phenomenological model for erosion of materials in jet flow[J]. Powder Technology, 2008, 187(3): 273-279. |
25 | ARABNEJAD H, MANSOURI A, SHIRAZI S A, et al. Development of mechanistic erosion equation for solid particles[J]. Wear, 2015, 332-333: 1044-1050. |
26 | PARSI M, NAJMI K, NAJAFIFARD F, et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 850-873. |
27 | 任靖豪, 易贤, 王强, 等. 复杂构型水滴收集率的拉格朗日计算方法[J]. 航空动力学报, 2020, 35(12): 2553-2561. |
REN J H, YI X, WANG Q, et al. Lagrangian simulation method of droplet collection efficiency for complex configuration[J]. Journal of Aerospace Power, 2020, 35(12): 2553-2561 (in Chinese). | |
28 | 马乙楗, 柴得林, 王强, 等. 翼面结冰过程中的冰晶运动相变与黏附特性[J]. 航空学报, 2023, 44(1): 41-52. |
MA Y J, CHAI D L, WANG Q, et al. Phase change and adhesion characteristics of ice crystal movements in wing icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 41-52 (in Chinese). | |
29 | CURRIE T, STRUK P, TSAO J C, et al. Fundamental study of mixed-phase icing with application to ice crystal accretion in aircraft jet engines[C]∥4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA. |
30 | CURRIE T C, FULEKI D, MAHALLATI A. Experimental studies of mixed-phase sticking efficiency for ice crystal accretion in jet engines[C]∥6th AIAA Atmospheric and Space Environments Conference. Reston: AIAA. |
31 | 郭向东, 胡站伟, 丁亮, 等. 大型结冰风洞中冰晶热/力平衡特性数值研究[J]. 航空动力学报, 2022, 37(3): 478-491. |
GUO X D, HU Z W, DING L, et al. Numerical investigation of thermal and mechanical equilibrium characteristics of ice crystal in large icing wind tunnel[J]. Journal of Aerospace Power, 2022, 37(3): 478-491 (in Chinese). | |
32 | H?LZER A, SOMMERFELD M. New simple correlation formula for the drag coefficient of non-spherical particles[J]. Powder Technology, 2008, 184(3): 361-365. |
33 | HAMMERSLEY J M, HANDSCOMB D C. Short re?sumé of statistical terms[M]∥Monte Carlo Methods. Dordrecht: Springer Netherlands, 1964: 10-24. |
34 | VERDIN P G, CHARPIN J P F. Multi-stepping ice prediction on cylinders and other relevant geometries[J]. Journal of Aircraft, 2013, 50(3): 871-878. |
35 | WRIGHT W. A summary of validation results for LEWICE 2.0[C]∥37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA. |
/
〈 |
|
〉 |